of Automotive Grade Linux to create open source software solutions for
automotive applications.
-The driver consists basically of three layers. The hardware layer, the
-core layer and the application layer. The core layer consists of the core
-module only. This module handles the communication flow through all three
-layers, the configuration of the driver, the configuration interface
-representation in sysfs, and the buffer management.
-For each of the other two layers a selection of modules is provided. These
-modules can arbitrarily be combined to meet the needs of the desired
-system architecture. A module of the hardware layer is referred to as an
-HDM (hardware dependent module). Each module of this layer handles exactly
-one of the peripheral interfaces of a network interface controller (e.g.
-USB, MediaLB, I2C). A module of the application layer is referred to as an
-AIM (application interfacing module). The modules of this layer give access
-to MOST via one the following ways: character devices, ALSA, Networking or
-V4L2.
+The MOST driver uses module stacking to divide the associated modules into
+three layers. From bottom up these layers are: the adapter layer, the core
+layer and the application layer. The core layer implements the MOST
+subsystem and consists basically of the module core.c and its API. It
+registers the MOST bus with the kernel's device model, handles the data
+routing through all three layers, the configuration of the driver, the
+representation of the configuration interface in sysfs and the buffer
+management.
+
+For each of the other two layers a set of modules is provided. Those can be
+arbitrarily combined with the core to meet the connectivity of the desired
+system architecture.
+
+A module of the adapter layer is basically a device driver for a different
+subsystem. It is registered with the core to connect the MOST subsystem to
+the attached network interface controller hardware. Hence, a given module
+of this layer is designed to handle exactly one of the peripheral
+interfaces (e.g. USB, MediaLB, I2C) the hardware provides.
+
+A module of the application layer is referred to as a core comoponent,
+which kind of extends the core by providing connectivity to the user space.
+Applications, then, can access a MOST network via character devices, an
+ALSA soundcard, a Network adapter or a V4L2 capture device.
To physically access MOST, an Intelligent Network Interface Controller
(INIC) is needed. For more information on available controllers visit:
- Section 1.1 Hardware Layer
+ Section 1.1 Adapter Layer
-The hardware layer contains so called hardware dependent modules (HDM). For each
-peripheral interface the hardware supports the driver has a suitable module
-that handles the interface.
-
-The HDMs encapsulate the peripheral interface specific knowledge of the driver
-and provides an easy way of extending the number of supported interfaces.
-Currently the following HDMs are available:
+The adapter layer contains a pool of device drivers. For each peripheral
+interface the hardware supports there is one suitable module that handles
+the interface. Adapter drivers encapsulate the peripheral interface
+specific knowledge of the MOST driver stack and provide an easy way of
+extending the number of supported interfaces. Currently the following
+interfaces are available:
1) MediaLB (DIM2)
Host wants to communicate with hardware via MediaLB.
3) USB
Host wants to communicate with the hardware via USB.
+Once an adapter driver recognizes a MOST device being attached, it
+registers it with the core, which, in turn, assigns the necessary members
+of the embedded struct device (e.g. the bus this device belongs to and
+attribute groups) and registers it with the kernel's device model.
- Section 1.2 Core Layer
-
-The core layer contains the mostcore module only, which processes the driver
-configuration via sysfs, buffer management and data forwarding.
+ Section 1.2 Core Layer
+This layer implements the MOST subsystem. It contains the core module and
+the header file most.h that exposes the API of the core. When inserted in
+the kernel, it registers the MOST bus_type with the kernel's device model
+and registers itself as a device driver for this bus. Besides these meta
+tasks the core populates the configuration directory for a registered MOST
+device (represented by struct most_interface) in sysfs and processes the
+configuration of the device's interface. The core layer also handles the
+buffer management and the data/message routing.
- Section 1.2 Application Layer
-The application layer contains so called application interfacing modules (AIM).
-Depending on how the driver should interface to the application, one or more
-suitable modules can be selected.
+ Section 1.3 Application Layer
-The AIMs encapsulate the application interface specific knowledge of the driver
-and provides access to user space or other kernel subsystems.
-Currently the following AIMs are available
+This layer contains a pool of device drivers that are components of the
+core designed to make up the userspace experience of the MOST driver stack.
+Depending on how an application is meant to interface the driver, one or
+more modules of this pool can be registered with the core. Currently the
+following components are available
1) Character Device
- Applications can access the driver by means of character devices.
+ Userspace can access the driver by means of character devices.
2) Networking
Standard networking applications (e.g. iperf) can by used to access
used to access the driver via the ALSA subsystem.
+ Section 2 Usage of the MOST Driver
- Section 2 Configuration
+ Section 2.1 Configuration
-See ABI/sysfs-class-most.txt
+See ABI/sysfs-bus-most.txt
+ Section 2.2 Routing Channels
- Section 3 USB Padding
+To connect a configured channel to a certain core component and make it
+accessible for user space applications, the driver attribute 'add_link' is
+used. The configuration string passed to it has the following format:
-When transceiving synchronous or isochronous data, the number of packets per USB
-transaction and the sub-buffer size need to be configured. These values
-are needed for the driver to process buffer padding, as expected by hardware,
-which is for performance optimization purposes of the USB transmission.
+ "device_name:channel_name:component_name:link_name[.param]"
-When transmitting synchronous data the allocated channel width needs to be
-written to 'set_subbuffer_size'. Additionally, the number of MOST frames that
-should travel to the host within one USB transaction need to be written to
-'packets_per_xact'.
+It is the concatenation of up to four substrings separated by a colon. The
+substrings contain the names of the MOST interface, the channel, the
+component driver and a custom name with which the link is going to be
+referenced with. Since some components need additional information, the
+link name can be extended with a component-specific parameter (separated by
+a dot). In case the character device component is loaded, the handle would
+also appear as a device node in the /dev directory.
-Internally the synchronous threshold is calculated as follows:
+Cdev component example:
+ $ echo "mdev0:ep_81:cdev:my_rx_channel" >$(DRV_DIR)/add_link
- frame_size = set_subbuffer_size * packets_per_xact
-In case 'packets_per_xact' is set to 0xFF the maximum number of packets,
-allocated within one MOST frame, is calculated that fit into _one_ 512 byte
-USB full packet.
+Sound component example:
- frame_size = floor(MTU_USB / bandwidth_sync) * bandwidth_sync
+The sound component needs an additional parameter to determine the audio
+resolution that is going to be used. The following formats are available:
-This frame_size is the number of synchronous data within an USB transaction,
-which renders MTU_USB - frame_size bytes for padding.
+ - "1x8" (Mono)
+ - "2x16" (16-bit stereo)
+ - "2x24" (24-bit stereo)
+ - "2x32" (32-bit stereo)
+ - "6x16" (16-bit surround 5.1)
-When transmitting isochronous AVP data the desired packet size needs to be
-written to 'set_subbuffer_size' and hardware will always expect two isochronous
-packets within one USB transaction. This renders
+ $ echo "mdev0:ep_81:sound:most51_playback.6x16" >$(DRV_DIR)/add_link
- MTU_USB - (2 * set_subbuffer_size)
-bytes for padding.
-
-Note that at least 2 times set_subbuffer_size bytes for isochronous data or
-set_subbuffer_size times packts_per_xact bytes for synchronous data need to be
-put in the transmission buffer and passed to the driver.
-Since HDMs are allowed to change a chosen configuration to best fit its
-constraints, it is recommended to always double check the configuration and read
-back the previously written files.
+ Section 2.3 USB Padding
+When transceiving synchronous or isochronous data, the number of packets
+per USB transaction and the sub-buffer size need to be configured. These
+values are needed for the driver to process buffer padding, as expected by
+hardware, which is for performance optimization purposes of the USB
+transmission.
+When transmitting synchronous data the allocated channel width needs to be
+written to 'set_subbuffer_size'. Additionally, the number of MOST frames
+that should travel to the host within one USB transaction need to be
+written to 'packets_per_xact'.
- Section 4 Routing Channels
+The driver, then, calculates the synchronous threshold as follows:
-To connect a channel that has been configured as outlined above to an AIM and
-make it accessible to user space applications, the attribute file 'add_link' is
-used. To actually bind a channel to the AIM a string needs to be written to the
-file that complies with the following syntax:
+ frame_size = set_subbuffer_size * packets_per_xact
- "most_device:channel_name:link_name[.param]"
+In case 'packets_per_xact' is set to 0xFF the maximum number of packets,
+allocated within one MOST frame, is calculated that fit into _one_ 512 byte
+USB full packet.
-The example above links the channel "channel_name" of the device "most_device"
-to the AIM. In case the AIM interfaces the VFS this would also create a device
-node "link_name" in the /dev directory. The parameter "param" is an AIM dependent
-string, which can be omitted in case the used AIM does not make any use of it.
+ frame_size = floor(MTU_USB / bandwidth_sync) * bandwidth_sync
-Cdev AIM example:
- $ echo "mdev0:ep_81:my_rx_channel" >add_link
- $ echo "mdev0:ep_81" >add_link
+This frame_size is the number of synchronous data within an USB
+transaction, which renders MTU_USB - frame_size bytes for padding.
+When transmitting isochronous AVP data the desired packet size needs to be
+written to 'set_subbuffer_size' and hardware will always expect two
+isochronous packets within one USB transaction. This renders
-Sound/ALSA AIM example:
+ MTU_USB - (2 * set_subbuffer_size)
-The sound/ALSA AIM needs an additional parameter to determine the audio resolution
-that is going to be used. The following strings can be used:
+bytes for padding.
- - "1x8" (Mono)
- - "2x16" (16-bit stereo)
- - "2x24" (24-bit stereo)
- - "2x32" (32-bit stereo)
+Note that at least (2 * set_subbuffer_size) bytes for isochronous data or
+(set_subbuffer_size * packts_per_xact) bytes for synchronous data need to
+be put in the transmission buffer and passed to the driver.
- $ echo "mdev0:ep_81:audio_rx.2x16" >add_link
- $ echo "mdev0:ep_81" >add_link
+Since adapter drivers are allowed to change a chosen configuration to best
+fit its constraints, it is recommended to always double check the
+configuration and read back the previously written files.