#endif
#endif /* CONFIG_M5272 */
-/* Forward declarations of some structures to support different PHYs
-*/
+/* Forward declarations of some structures to support different PHYs */
typedef struct {
uint mii_data;
#error "FEC: descriptor ring size constants too large"
#endif
-/* Interrupt events/masks.
-*/
+/* Interrupt events/masks. */
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
ushort skb_cur;
ushort skb_dirty;
- /* CPM dual port RAM relative addresses.
- */
+ /* CPM dual port RAM relative addresses */
dma_addr_t bd_dma;
- /* Address of Rx and Tx buffers. */
+ /* Address of Rx and Tx buffers */
struct bufdesc *rx_bd_base;
struct bufdesc *tx_bd_base;
/* The next free ring entry */
struct bufdesc *cur_rx, *cur_tx;
- /* The ring entries to be free()ed. */
+ /* The ring entries to be free()ed */
struct bufdesc *dirty_tx;
uint tx_full;
static int mii_queue(struct net_device *dev, int request,
void (*func)(uint, struct net_device *));
-/* Make MII read/write commands for the FEC.
-*/
+/* Make MII read/write commands for the FEC */
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
(VAL & 0xffff))
#define mk_mii_end 0
-/* Transmitter timeout.
-*/
-#define TX_TIMEOUT (2*HZ)
+/* Transmitter timeout */
+#define TX_TIMEOUT (2 * HZ)
-/* Register definitions for the PHY.
-*/
+/* Register definitions for the PHY */
#define MII_REG_CR 0 /* Control Register */
#define MII_REG_SR 1 /* Status Register */
bdp = fep->cur_tx;
status = bdp->cbd_sc;
-#ifndef final_version
+
if (status & BD_ENET_TX_READY) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since dev->tbusy should be set.
spin_unlock_irqrestore(&fep->hw_lock, flags);
return 1;
}
-#endif
- /* Clear all of the status flags.
- */
+ /* Clear all of the status flags */
status &= ~BD_ENET_TX_STATS;
- /* Set buffer length and buffer pointer.
- */
+ /* Set buffer length and buffer pointer */
bdp->cbd_bufaddr = __pa(skb->data);
bdp->cbd_datlen = skb->len;
/*
- * On some FEC implementations data must be aligned on
- * 4-byte boundaries. Use bounce buffers to copy data
- * and get it aligned. Ugh.
+ * On some FEC implementations data must be aligned on
+ * 4-byte boundaries. Use bounce buffers to copy data
+ * and get it aligned. Ugh.
*/
if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
unsigned int index;
bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
}
- /* Save skb pointer.
- */
+ /* Save skb pointer */
fep->tx_skbuff[fep->skb_cur] = skb;
dev->stats.tx_bytes += skb->len;
/* Send it on its way. Tell FEC it's ready, interrupt when done,
* it's the last BD of the frame, and to put the CRC on the end.
*/
-
status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
| BD_ENET_TX_LAST | BD_ENET_TX_TC);
bdp->cbd_sc = status;
/* Trigger transmission start */
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
- /* If this was the last BD in the ring, start at the beginning again.
- */
- if (status & BD_ENET_TX_WRAP) {
+ /* If this was the last BD in the ring, start at the beginning again. */
+ if (status & BD_ENET_TX_WRAP)
bdp = fep->tx_bd_base;
- } else {
+ else
bdp++;
- }
if (bdp == fep->dirty_tx) {
fep->tx_full = 1;
netif_wake_queue(dev);
}
-/* The interrupt handler.
- * This is called from the MPC core interrupt.
- */
static irqreturn_t
fec_enet_interrupt(int irq, void * dev_id)
{
uint int_events;
irqreturn_t ret = IRQ_NONE;
- /* Get the interrupt events that caused us to be here. */
do {
int_events = readl(fep->hwp + FEC_IEVENT);
writel(int_events, fep->hwp + FEC_IEVENT);
- /* Handle receive event in its own function. */
if (int_events & FEC_ENET_RXF) {
ret = IRQ_HANDLED;
fec_enet_rx(dev);
dev->stats.tx_packets++;
}
-#ifndef final_version
if (status & BD_ENET_TX_READY)
printk("HEY! Enet xmit interrupt and TX_READY.\n");
-#endif
+
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (status & BD_ENET_TX_DEF)
dev->stats.collisions++;
- /* Free the sk buffer associated with this last transmit.
- */
+ /* Free the sk buffer associated with this last transmit */
dev_kfree_skb_any(skb);
fep->tx_skbuff[fep->skb_dirty] = NULL;
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
- /* Update pointer to next buffer descriptor to be transmitted.
- */
+ /* Update pointer to next buffer descriptor to be transmitted */
if (status & BD_ENET_TX_WRAP)
bdp = fep->tx_bd_base;
else
bdp++;
- /* Since we have freed up a buffer, the ring is no longer
- * full.
+ /* Since we have freed up a buffer, the ring is no longer full
*/
if (fep->tx_full) {
fep->tx_full = 0;
*/
bdp = fep->cur_rx;
-while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
+ while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
-#ifndef final_version
- /* Since we have allocated space to hold a complete frame,
- * the last indicator should be set.
- */
- if ((status & BD_ENET_RX_LAST) == 0)
- printk("FEC ENET: rcv is not +last\n");
-#endif
+ /* Since we have allocated space to hold a complete frame,
+ * the last indicator should be set.
+ */
+ if ((status & BD_ENET_RX_LAST) == 0)
+ printk("FEC ENET: rcv is not +last\n");
- if (!fep->opened)
- goto rx_processing_done;
+ if (!fep->opened)
+ goto rx_processing_done;
- /* Check for errors. */
- if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
+ /* Check for errors. */
+ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
BD_ENET_RX_CR | BD_ENET_RX_OV)) {
- dev->stats.rx_errors++;
- if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
- /* Frame too long or too short. */
- dev->stats.rx_length_errors++;
+ dev->stats.rx_errors++;
+ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
+ /* Frame too long or too short. */
+ dev->stats.rx_length_errors++;
+ }
+ if (status & BD_ENET_RX_NO) /* Frame alignment */
+ dev->stats.rx_frame_errors++;
+ if (status & BD_ENET_RX_CR) /* CRC Error */
+ dev->stats.rx_crc_errors++;
+ if (status & BD_ENET_RX_OV) /* FIFO overrun */
+ dev->stats.rx_fifo_errors++;
}
- if (status & BD_ENET_RX_NO) /* Frame alignment */
- dev->stats.rx_frame_errors++;
- if (status & BD_ENET_RX_CR) /* CRC Error */
- dev->stats.rx_crc_errors++;
- if (status & BD_ENET_RX_OV) /* FIFO overrun */
- dev->stats.rx_fifo_errors++;
- }
- /* Report late collisions as a frame error.
- * On this error, the BD is closed, but we don't know what we
- * have in the buffer. So, just drop this frame on the floor.
- */
- if (status & BD_ENET_RX_CL) {
- dev->stats.rx_errors++;
- dev->stats.rx_frame_errors++;
- goto rx_processing_done;
- }
+ /* Report late collisions as a frame error.
+ * On this error, the BD is closed, but we don't know what we
+ * have in the buffer. So, just drop this frame on the floor.
+ */
+ if (status & BD_ENET_RX_CL) {
+ dev->stats.rx_errors++;
+ dev->stats.rx_frame_errors++;
+ goto rx_processing_done;
+ }
- /* Process the incoming frame.
- */
- dev->stats.rx_packets++;
- pkt_len = bdp->cbd_datlen;
- dev->stats.rx_bytes += pkt_len;
- data = (__u8*)__va(bdp->cbd_bufaddr);
+ /* Process the incoming frame. */
+ dev->stats.rx_packets++;
+ pkt_len = bdp->cbd_datlen;
+ dev->stats.rx_bytes += pkt_len;
+ data = (__u8*)__va(bdp->cbd_bufaddr);
- dma_sync_single(NULL, (unsigned long)__pa(data),
+ dma_sync_single(NULL, (unsigned long)__pa(data),
pkt_len - 4, DMA_FROM_DEVICE);
- /* This does 16 byte alignment, exactly what we need.
- * The packet length includes FCS, but we don't want to
- * include that when passing upstream as it messes up
- * bridging applications.
- */
- skb = dev_alloc_skb(pkt_len-4);
-
- if (skb == NULL) {
- printk("%s: Memory squeeze, dropping packet.\n", dev->name);
- dev->stats.rx_dropped++;
- } else {
- skb_put(skb,pkt_len-4); /* Make room */
- skb_copy_to_linear_data(skb, data, pkt_len-4);
- skb->protocol=eth_type_trans(skb,dev);
- netif_rx(skb);
- }
- rx_processing_done:
-
- /* Clear the status flags for this buffer.
- */
- status &= ~BD_ENET_RX_STATS;
+ /* This does 16 byte alignment, exactly what we need.
+ * The packet length includes FCS, but we don't want to
+ * include that when passing upstream as it messes up
+ * bridging applications.
+ */
+ skb = dev_alloc_skb(pkt_len - 4);
- /* Mark the buffer empty.
- */
- status |= BD_ENET_RX_EMPTY;
- bdp->cbd_sc = status;
+ if (skb == NULL) {
+ printk("%s: Memory squeeze, dropping packet.\n",
+ dev->name);
+ dev->stats.rx_dropped++;
+ } else {
+ skb_put(skb, pkt_len - 4); /* Make room */
+ skb_copy_to_linear_data(skb, data, pkt_len - 4);
+ skb->protocol = eth_type_trans(skb, dev);
+ netif_rx(skb);
+ }
+rx_processing_done:
+ /* Clear the status flags for this buffer */
+ status &= ~BD_ENET_RX_STATS;
- /* Update BD pointer to next entry.
- */
- if (status & BD_ENET_RX_WRAP)
- bdp = fep->rx_bd_base;
- else
- bdp++;
+ /* Mark the buffer empty */
+ status |= BD_ENET_RX_EMPTY;
+ bdp->cbd_sc = status;
-#if 1
- /* Doing this here will keep the FEC running while we process
- * incoming frames. On a heavily loaded network, we should be
- * able to keep up at the expense of system resources.
- */
- writel(0, fep->hwp + FEC_R_DES_ACTIVE);
-#endif
- } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
+ /* Update BD pointer to next entry */
+ if (status & BD_ENET_RX_WRAP)
+ bdp = fep->rx_bd_base;
+ else
+ bdp++;
+ /* Doing this here will keep the FEC running while we process
+ * incoming frames. On a heavily loaded network, we should be
+ * able to keep up at the expense of system resources.
+ */
+ writel(0, fep->hwp + FEC_R_DES_ACTIVE);
+ }
fep->cur_rx = bdp;
-#if 0
- /* Doing this here will allow us to process all frames in the
- * ring before the FEC is allowed to put more there. On a heavily
- * loaded network, some frames may be lost. Unfortunately, this
- * increases the interrupt overhead since we can potentially work
- * our way back to the interrupt return only to come right back
- * here.
- */
- fecp->fec_r_des_active = 0;
-#endif
-
spin_unlock_irq(&fep->hw_lock);
}
-
/* called from interrupt context */
static void
fec_enet_mii(struct net_device *dev)
mii_list_t *mip;
int retval;
- /* Add PHY address to register command.
- */
+ /* Add PHY address to register command */
fep = netdev_priv(dev);
spin_lock_irqsave(&fep->mii_lock, flags);
fec_restart(dev, duplex);
} else
fec_stop(dev);
-
-#if 0
- enable_irq(fep->mii_irq);
-#endif
-
}
/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
struct fec_enet_private *fep = netdev_priv(dev);
/*
- ** We cannot queue phy_task twice in the workqueue. It
- ** would cause an endless loop in the workqueue.
- ** Fortunately, if the last mii_relink entry has not yet been
- ** executed now, it will do the job for the current interrupt,
- ** which is just what we want.
- */
+ * We cannot queue phy_task twice in the workqueue. It
+ * would cause an endless loop in the workqueue.
+ * Fortunately, if the last mii_relink entry has not yet been
+ * executed now, it will do the job for the current interrupt,
+ * which is just what we want.
+ */
if (fep->mii_phy_task_queued)
return;
{ mk_mii_end, }
};
-/* Read remainder of PHY ID.
-*/
+/* Read remainder of PHY ID. */
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
if (fep->phy_addr < 32) {
if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
- /* Got first part of ID, now get remainder.
- */
+ /* Got first part of ID, now get remainder */
fep->phy_id = phytype << 16;
mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
mii_discover_phy3);
}
}
-/* This interrupt occurs when the PHY detects a link change.
-*/
+/* This interrupt occurs when the PHY detects a link change */
#ifdef HAVE_mii_link_interrupt
static irqreturn_t
mii_link_interrupt(int irq, void * dev_id)
fec_phy_ack_intr();
-#if 0
- disable_irq(fep->mii_irq); /* disable now, enable later */
-#endif
-
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
netif_start_queue(dev);
fep->opened = 1;
- return 0; /* Success */
+ return 0;
}
static int
{
struct fec_enet_private *fep = netdev_priv(dev);
- /* Don't know what to do yet.
- */
+ /* Don't know what to do yet. */
fep->opened = 0;
netif_stop_queue(dev);
fec_stop(dev);
unsigned int i, j, bit, data, crc, tmp;
unsigned char hash;
- if (dev->flags&IFF_PROMISC) {
+ if (dev->flags & IFF_PROMISC) {
tmp = readl(fep->hwp + FEC_R_CNTRL);
tmp |= 0x8;
writel(tmp, fep->hwp + FEC_R_CNTRL);
if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
- * filter to all 1's.
+ * filter to all 1's
*/
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
} else {
- /* Clear filter and add the addresses in hash register.
- */
+ /* Clear filter and add the addresses in hash register
+ */
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
dmi = dev->mc_list;
- for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
- {
- /* Only support group multicast for now.
- */
+ for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) {
+ /* Only support group multicast for now */
if (!(dmi->dmi_addr[0] & 1))
continue;
- /* calculate crc32 value of mac address
- */
+ /* calculate crc32 value of mac address */
crc = 0xffffffff;
- for (i = 0; i < dmi->dmi_addrlen; i++)
- {
+ for (i = 0; i < dmi->dmi_addrlen; i++) {
data = dmi->dmi_addr[i];
- for (bit = 0; bit < 8; bit++, data >>= 1)
- {
+ for (bit = 0; bit < 8; bit++, data >>= 1) {
crc = (crc >> 1) ^
(((crc ^ data) & 1) ? CRC32_POLY : 0);
}
}
/* only upper 6 bits (HASH_BITS) are used
- which point to specific bit in he hash registers
- */
+ * which point to specific bit in he hash registers
+ */
hash = (crc >> (32 - HASH_BITS)) & 0x3f;
if (hash > 31) {
}
}
-/* Set a MAC change in hardware.
- */
+/* Set a MAC change in hardware. */
static void
fec_set_mac_address(struct net_device *dev)
{
fep->hwp = (void __iomem *)dev->base_addr;
fep->netdev = dev;
- /* Whack a reset. We should wait for this.
- */
+ /* Whack a reset. We should wait for this. */
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
fep->skb_cur = fep->skb_dirty = 0;
- /* Initialize the receive buffer descriptors.
- */
+ /* Initialize the receive buffer descriptors. */
bdp = fep->rx_bd_base;
for (i=0; i<FEC_ENET_RX_PAGES; i++) {
- /* Allocate a page.
- */
+ /* Allocate a page */
mem_addr = __get_free_page(GFP_KERNEL);
/* XXX: missing check for allocation failure */
- /* Initialize the BD for every fragment in the page.
- */
+ /* Initialize the BD for every fragment in the page */
for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
bdp->cbd_sc = BD_ENET_RX_EMPTY;
bdp->cbd_bufaddr = __pa(mem_addr);
}
}
- /* Set the last buffer to wrap.
- */
+ /* Set the last buffer to wrap */
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
- /* ...and the same for transmmit.
- */
+ /* ...and the same for transmit */
bdp = fep->tx_bd_base;
for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
if (j >= FEC_ENET_TX_FRPPG) {
}
fep->tx_bounce[i] = (unsigned char *) mem_addr;
- /* Initialize the BD for every fragment in the page.
- */
+ /* Initialize the BD for every fragment in the page */
bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
- /* Set the last buffer to wrap.
- */
+ /* Set the last buffer to wrap */
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
- /* Set receive and transmit descriptor base.
- */
+ /* Set receive and transmit descriptor base */
writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
fep->hwp + FEC_X_DES_START);
writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
#endif
- /* The FEC Ethernet specific entries in the device structure. */
+ /* The FEC Ethernet specific entries in the device structure */
dev->open = fec_enet_open;
dev->hard_start_xmit = fec_enet_start_xmit;
dev->tx_timeout = fec_timeout;
writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
writel(0, fep->hwp + FEC_X_CNTRL);
- /*
- * Set MII speed to 2.5 MHz
- */
+ /* Set MII speed to 2.5 MHz */
fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
/ 2500000) / 2) & 0x3F) << 1;
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
/* Reset SKB transmit buffers. */
fep->skb_cur = fep->skb_dirty = 0;
- for (i=0; i<=TX_RING_MOD_MASK; i++) {
- if (fep->tx_skbuff[i] != NULL) {
+ for (i = 0; i <= TX_RING_MOD_MASK; i++) {
+ if (fep->tx_skbuff[i]) {
dev_kfree_skb_any(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL;
}
/* Initialize the receive buffer descriptors. */
bdp = fep->rx_bd_base;
- for (i=0; i<RX_RING_SIZE; i++) {
+ for (i = 0; i < RX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page. */
bdp->cbd_sc = BD_ENET_RX_EMPTY;
bdp++;
}
- /* Set the last buffer to wrap. */
+ /* Set the last buffer to wrap */
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
- /* ...and the same for transmmit. */
+ /* ...and the same for transmit */
bdp = fep->tx_bd_base;
- for (i=0; i<TX_RING_SIZE; i++) {
+ for (i = 0; i < TX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page. */
bdp->cbd_sc = 0;
bdp++;
}
- /* Set the last buffer to wrap. */
+ /* Set the last buffer to wrap */
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
- /* Enable MII mode. */
+ /* Enable MII mode */
if (duplex) {
/* MII enable / FD enable */
writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
}
fep->full_duplex = duplex;
- /* Set MII speed. */
+ /* Set MII speed */
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
- /* And last, enable the transmit and receive processing. */
+ /* And last, enable the transmit and receive processing */
writel(2, fep->hwp + FEC_ECNTRL);
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
- /* Enable interrupts we wish to service. */
+ /* Enable interrupts we wish to service */
writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII,
fep->hwp + FEC_IMASK);
}
{
struct fec_enet_private *fep = netdev_priv(dev);
- /*
- ** We cannot expect a graceful transmit stop without link !!!
- */
+ /* We cannot expect a graceful transmit stop without link !!! */
if (fep->link) {
writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
udelay(10);