*/
struct kthread_work;
typedef void (*kthread_work_func_t)(struct kthread_work *work);
+void kthread_delayed_work_timer_fn(unsigned long __data);
struct kthread_worker {
spinlock_t lock;
struct list_head work_list;
+ struct list_head delayed_work_list;
struct task_struct *task;
struct kthread_work *current_work;
};
struct kthread_worker *worker;
};
+struct kthread_delayed_work {
+ struct kthread_work work;
+ struct timer_list timer;
+};
+
#define KTHREAD_WORKER_INIT(worker) { \
.lock = __SPIN_LOCK_UNLOCKED((worker).lock), \
.work_list = LIST_HEAD_INIT((worker).work_list), \
+ .delayed_work_list = LIST_HEAD_INIT((worker).delayed_work_list),\
}
#define KTHREAD_WORK_INIT(work, fn) { \
.func = (fn), \
}
+#define KTHREAD_DELAYED_WORK_INIT(dwork, fn) { \
+ .work = KTHREAD_WORK_INIT((dwork).work, (fn)), \
+ .timer = __TIMER_INITIALIZER(kthread_delayed_work_timer_fn, \
+ 0, (unsigned long)&(dwork), \
+ TIMER_IRQSAFE), \
+ }
+
#define DEFINE_KTHREAD_WORKER(worker) \
struct kthread_worker worker = KTHREAD_WORKER_INIT(worker)
#define DEFINE_KTHREAD_WORK(work, fn) \
struct kthread_work work = KTHREAD_WORK_INIT(work, fn)
+#define DEFINE_KTHREAD_DELAYED_WORK(dwork, fn) \
+ struct kthread_delayed_work dwork = \
+ KTHREAD_DELAYED_WORK_INIT(dwork, fn)
+
/*
* kthread_worker.lock needs its own lockdep class key when defined on
* stack with lockdep enabled. Use the following macros in such cases.
(work)->func = (fn); \
} while (0)
+#define kthread_init_delayed_work(dwork, fn) \
+ do { \
+ kthread_init_work(&(dwork)->work, (fn)); \
+ __setup_timer(&(dwork)->timer, \
+ kthread_delayed_work_timer_fn, \
+ (unsigned long)(dwork), \
+ TIMER_IRQSAFE); \
+ } while (0)
+
int kthread_worker_fn(void *worker_ptr);
__printf(1, 2)
bool kthread_queue_work(struct kthread_worker *worker,
struct kthread_work *work);
+
+bool kthread_queue_delayed_work(struct kthread_worker *worker,
+ struct kthread_delayed_work *dwork,
+ unsigned long delay);
+
void kthread_flush_work(struct kthread_work *work);
void kthread_flush_worker(struct kthread_worker *worker);
spin_lock_init(&worker->lock);
lockdep_set_class_and_name(&worker->lock, key, name);
INIT_LIST_HEAD(&worker->work_list);
+ INIT_LIST_HEAD(&worker->delayed_work_list);
worker->task = NULL;
}
EXPORT_SYMBOL_GPL(__kthread_init_worker);
}
EXPORT_SYMBOL_GPL(kthread_queue_work);
+/**
+ * kthread_delayed_work_timer_fn - callback that queues the associated kthread
+ * delayed work when the timer expires.
+ * @__data: pointer to the data associated with the timer
+ *
+ * The format of the function is defined by struct timer_list.
+ * It should have been called from irqsafe timer with irq already off.
+ */
+void kthread_delayed_work_timer_fn(unsigned long __data)
+{
+ struct kthread_delayed_work *dwork =
+ (struct kthread_delayed_work *)__data;
+ struct kthread_work *work = &dwork->work;
+ struct kthread_worker *worker = work->worker;
+
+ /*
+ * This might happen when a pending work is reinitialized.
+ * It means that it is used a wrong way.
+ */
+ if (WARN_ON_ONCE(!worker))
+ return;
+
+ spin_lock(&worker->lock);
+ /* Work must not be used with >1 worker, see kthread_queue_work(). */
+ WARN_ON_ONCE(work->worker != worker);
+
+ /* Move the work from worker->delayed_work_list. */
+ WARN_ON_ONCE(list_empty(&work->node));
+ list_del_init(&work->node);
+ kthread_insert_work(worker, work, &worker->work_list);
+
+ spin_unlock(&worker->lock);
+}
+EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
+
+void __kthread_queue_delayed_work(struct kthread_worker *worker,
+ struct kthread_delayed_work *dwork,
+ unsigned long delay)
+{
+ struct timer_list *timer = &dwork->timer;
+ struct kthread_work *work = &dwork->work;
+
+ WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn ||
+ timer->data != (unsigned long)dwork);
+
+ /*
+ * If @delay is 0, queue @dwork->work immediately. This is for
+ * both optimization and correctness. The earliest @timer can
+ * expire is on the closest next tick and delayed_work users depend
+ * on that there's no such delay when @delay is 0.
+ */
+ if (!delay) {
+ kthread_insert_work(worker, work, &worker->work_list);
+ return;
+ }
+
+ /* Be paranoid and try to detect possible races already now. */
+ kthread_insert_work_sanity_check(worker, work);
+
+ list_add(&work->node, &worker->delayed_work_list);
+ work->worker = worker;
+ timer_stats_timer_set_start_info(&dwork->timer);
+ timer->expires = jiffies + delay;
+ add_timer(timer);
+}
+
+/**
+ * kthread_queue_delayed_work - queue the associated kthread work
+ * after a delay.
+ * @worker: target kthread_worker
+ * @dwork: kthread_delayed_work to queue
+ * @delay: number of jiffies to wait before queuing
+ *
+ * If the work has not been pending it starts a timer that will queue
+ * the work after the given @delay. If @delay is zero, it queues the
+ * work immediately.
+ *
+ * Return: %false if the @work has already been pending. It means that
+ * either the timer was running or the work was queued. It returns %true
+ * otherwise.
+ */
+bool kthread_queue_delayed_work(struct kthread_worker *worker,
+ struct kthread_delayed_work *dwork,
+ unsigned long delay)
+{
+ struct kthread_work *work = &dwork->work;
+ unsigned long flags;
+ bool ret = false;
+
+ spin_lock_irqsave(&worker->lock, flags);
+
+ if (list_empty(&work->node)) {
+ __kthread_queue_delayed_work(worker, dwork, delay);
+ ret = true;
+ }
+
+ spin_unlock_irqrestore(&worker->lock, flags);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
+
struct kthread_flush_work {
struct kthread_work work;
struct completion done;