[PATCH] scheduler cache-hot-autodetect
authorakpm@osdl.org <akpm@osdl.org>
Thu, 12 Jan 2006 09:05:30 +0000 (01:05 -0800)
committerLinus Torvalds <torvalds@g5.osdl.org>
Thu, 12 Jan 2006 17:08:50 +0000 (09:08 -0800)
\r)

From: Ingo Molnar <mingo@elte.hu>

This is the latest version of the scheduler cache-hot-auto-tune patch.

The first problem was that detection time scaled with O(N^2), which is
unacceptable on larger SMP and NUMA systems. To solve this:

- I've added a 'domain distance' function, which is used to cache
  measurement results. Each distance is only measured once. This means
  that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT
  distances 0 and 1, and on SMP distance 0 is measured. The code walks
  the domain tree to determine the distance, so it automatically follows
  whatever hierarchy an architecture sets up. This cuts down on the boot
  time significantly and removes the O(N^2) limit. The only assumption
  is that migration costs can be expressed as a function of domain
  distance - this covers the overwhelming majority of existing systems,
  and is a good guess even for more assymetric systems.

  [ People hacking systems that have assymetries that break this
    assumption (e.g. different CPU speeds) should experiment a bit with
    the cpu_distance() function. Adding a ->migration_distance factor to
    the domain structure would be one possible solution - but lets first
    see the problem systems, if they exist at all. Lets not overdesign. ]

Another problem was that only a single cache-size was used for measuring
the cost of migration, and most architectures didnt set that variable
up. Furthermore, a single cache-size does not fit NUMA hierarchies with
L3 caches and does not fit HT setups, where different CPUs will often
have different 'effective cache sizes'. To solve this problem:

- Instead of relying on a single cache-size provided by the platform and
  sticking to it, the code now auto-detects the 'effective migration
  cost' between two measured CPUs, via iterating through a wide range of
  cachesizes. The code searches for the maximum migration cost, which
  occurs when the working set of the test-workload falls just below the
  'effective cache size'. I.e. real-life optimized search is done for
  the maximum migration cost, between two real CPUs.

  This, amongst other things, has the positive effect hat if e.g. two
  CPUs share a L2/L3 cache, a different (and accurate) migration cost
  will be found than between two CPUs on the same system that dont share
  any caches.

(The reliable measurement of migration costs is tricky - see the source
for details.)

Furthermore i've added various boot-time options to override/tune
migration behavior.

Firstly, there's a blanket override for autodetection:

migration_cost=1000,2000,3000

will override the depth 0/1/2 values with 1msec/2msec/3msec values.

Secondly, there's a global factor that can be used to increase (or
decrease) the autodetected values:

migration_factor=120

will increase the autodetected values by 20%. This option is useful to
tune things in a workload-dependent way - e.g. if a workload is
cache-insensitive then CPU utilization can be maximized by specifying
migration_factor=0.

I've tested the autodetection code quite extensively on x86, on 3
P3/Xeon/2MB, and the autodetected values look pretty good:

Dual Celeron (128K L2 cache):

 ---------------------
 migration cost matrix (max_cache_size: 131072, cpu: 467 MHz):
 ---------------------
           [00]    [01]
 [00]:     -     1.7(1)
 [01]:   1.7(1)    -
 ---------------------
 cacheflush times [2]: 0.0 (0) 1.7 (1784008)
 ---------------------

Here the slow memory subsystem dominates system performance, and even
though caches are small, the migration cost is 1.7 msecs.

Dual HT P4 (512K L2 cache):

 ---------------------
 migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz):
 ---------------------
           [00]    [01]    [02]    [03]
 [00]:     -     0.4(1)  0.0(0)  0.4(1)
 [01]:   0.4(1)    -     0.4(1)  0.0(0)
 [02]:   0.0(0)  0.4(1)    -     0.4(1)
 [03]:   0.4(1)  0.0(0)  0.4(1)    -
 ---------------------
 cacheflush times [2]: 0.0 (33900) 0.4 (448514)
 ---------------------

Here it can be seen that there is no migration cost between two HT
siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory
system makes inter-physical-CPU migration pretty cheap: 0.4 msecs.

8-way P3/Xeon [2MB L2 cache]:

 ---------------------
 migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz):
 ---------------------
           [00]    [01]    [02]    [03]    [04]    [05]    [06]    [07]
 [00]:     -    19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [01]:  19.2(1)    -    19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [02]:  19.2(1) 19.2(1)    -    19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [03]:  19.2(1) 19.2(1) 19.2(1)    -    19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [04]:  19.2(1) 19.2(1) 19.2(1) 19.2(1)    -    19.2(1) 19.2(1) 19.2(1)
 [05]:  19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)    -    19.2(1) 19.2(1)
 [06]:  19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)    -    19.2(1)
 [07]:  19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)    -
 ---------------------
 cacheflush times [2]: 0.0 (0) 19.2 (19281756)
 ---------------------

This one has huge caches and a relatively slow memory subsystem - so the
migration cost is 19 msecs.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Cc: <wilder@us.ibm.com>
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
12 files changed:
Documentation/kernel-parameters.txt
arch/i386/kernel/smpboot.c
arch/ia64/kernel/setup.c
arch/ppc/xmon/xmon.c
include/asm-i386/topology.h
include/asm-ia64/topology.h
include/asm-mips/mach-ip27/topology.h
include/asm-powerpc/topology.h
include/asm-x86_64/topology.h
include/linux/sched.h
include/linux/topology.h
kernel/sched.c

index dd0bfc291a682e60c39441d07ef0be026dceabee..fe11fccf7e41bd7bb1abd38be8c73cb52775cc2d 100644 (file)
@@ -856,6 +856,49 @@ running once the system is up.
 
        mga=            [HW,DRM]
 
+       migration_cost=
+                       [KNL,SMP] debug: override scheduler migration costs
+                       Format: <level-1-usecs>,<level-2-usecs>,...
+                       This debugging option can be used to override the
+                       default scheduler migration cost matrix. The numbers
+                       are indexed by 'CPU domain distance'.
+                       E.g. migration_cost=1000,2000,3000 on an SMT NUMA
+                       box will set up an intra-core migration cost of
+                       1 msec, an inter-core migration cost of 2 msecs,
+                       and an inter-node migration cost of 3 msecs.
+
+                       WARNING: using the wrong values here can break
+                       scheduler performance, so it's only for scheduler
+                       development purposes, not production environments.
+
+       migration_debug=
+                       [KNL,SMP] migration cost auto-detect verbosity
+                       Format=<0|1|2>
+                       If a system's migration matrix reported at bootup
+                       seems erroneous then this option can be used to
+                       increase verbosity of the detection process.
+                       We default to 0 (no extra messages), 1 will print
+                       some more information, and 2 will be really
+                       verbose (probably only useful if you also have a
+                       serial console attached to the system).
+
+       migration_factor=
+                       [KNL,SMP] multiply/divide migration costs by a factor
+                       Format=<percent>
+                       This debug option can be used to proportionally
+                       increase or decrease the auto-detected migration
+                       costs for all entries of the migration matrix.
+                       E.g. migration_factor=150 will increase migration
+                       costs by 50%. (and thus the scheduler will be less
+                       eager migrating cache-hot tasks)
+                       migration_factor=80 will decrease migration costs
+                       by 20%. (thus the scheduler will be more eager to
+                       migrate tasks)
+
+                       WARNING: using the wrong values here can break
+                       scheduler performance, so it's only for scheduler
+                       development purposes, not production environments.
+
        mousedev.tap_time=
                        [MOUSE] Maximum time between finger touching and
                        leaving touchpad surface for touch to be considered
index b3c2e2c26743381e5f1a8b3dfd592c2c0cb5d2c9..a9bf5f222e4787a011cdaaf0ba866e553d1c51b7 100644 (file)
@@ -1096,6 +1096,7 @@ static void smp_tune_scheduling (void)
                        cachesize = 16; /* Pentiums, 2x8kB cache */
                        bandwidth = 100;
                }
+               max_cache_size = cachesize * 1024;
        }
 }
 
index d91c8ff2c0d7d3fe732b49fad5b6177fe1bc5e87..0daa8fa9ef32c8582f4bea7f5fa4183260686df2 100644 (file)
@@ -696,6 +696,7 @@ static void
 get_max_cacheline_size (void)
 {
        unsigned long line_size, max = 1;
+       unsigned int cache_size = 0;
        u64 l, levels, unique_caches;
         pal_cache_config_info_t cci;
         s64 status;
@@ -725,6 +726,8 @@ get_max_cacheline_size (void)
                line_size = 1 << cci.pcci_line_size;
                if (line_size > max)
                        max = line_size;
+               if (cache_size < cci.pcci_cache_size)
+                       cache_size = cci.pcci_cache_size;
                if (!cci.pcci_unified) {
                        status = ia64_pal_cache_config_info(l,
                                                    /* cache_type (instruction)= */ 1,
@@ -741,6 +744,9 @@ get_max_cacheline_size (void)
                        ia64_i_cache_stride_shift = cci.pcci_stride;
        }
   out:
+#ifdef CONFIG_SMP
+       max_cache_size = max(max_cache_size, cache_size);
+#endif
        if (max > ia64_max_cacheline_size)
                ia64_max_cacheline_size = max;
 }
index 2b483b4f1602b12a73d2b60ba55fea20faa53e31..9075a7538e26410d83bb33a50f822816b26e76bb 100644 (file)
@@ -99,7 +99,7 @@ static void remove_bpts(void);
 static void insert_bpts(void);
 static struct bpt *at_breakpoint(unsigned pc);
 static void bpt_cmds(void);
-static void cacheflush(void);
+void cacheflush(void);
 #ifdef CONFIG_SMP
 static void cpu_cmd(void);
 #endif /* CONFIG_SMP */
index 0ec27c9e8e45ba696be1a06a81df49d27d222729..d7e19eb344b7ab4f83c6611ec3afb675edf86d13 100644 (file)
@@ -72,7 +72,6 @@ static inline int node_to_first_cpu(int node)
        .max_interval           = 32,                   \
        .busy_factor            = 32,                   \
        .imbalance_pct          = 125,                  \
-       .cache_hot_time         = (10*1000000),         \
        .cache_nice_tries       = 1,                    \
        .busy_idx               = 3,                    \
        .idle_idx               = 1,                    \
index f7c330467e7e92247993d6b1fe3b1b3c7ed950a6..d8aae4da3978945adae91064c3ebbe8d0b29f01b 100644 (file)
@@ -55,7 +55,6 @@ void build_cpu_to_node_map(void);
        .max_interval           = 4,                    \
        .busy_factor            = 64,                   \
        .imbalance_pct          = 125,                  \
-       .cache_hot_time         = (10*1000000),         \
        .per_cpu_gain           = 100,                  \
        .cache_nice_tries       = 2,                    \
        .busy_idx               = 2,                    \
@@ -81,7 +80,6 @@ void build_cpu_to_node_map(void);
        .max_interval           = 8*(min(num_online_cpus(), 32)), \
        .busy_factor            = 64,                   \
        .imbalance_pct          = 125,                  \
-       .cache_hot_time         = (10*1000000),         \
        .cache_nice_tries       = 2,                    \
        .busy_idx               = 3,                    \
        .idle_idx               = 2,                    \
index 82141c711c338ad5a64c9cef3009b0e99205e208..59d26b52ba321af8775bfee6edcb9de3191f1252 100644 (file)
@@ -27,7 +27,6 @@ extern unsigned char __node_distances[MAX_COMPACT_NODES][MAX_COMPACT_NODES];
        .max_interval           = 32,                   \
        .busy_factor            = 32,                   \
        .imbalance_pct          = 125,                  \
-       .cache_hot_time         = (10*1000),            \
        .cache_nice_tries       = 1,                    \
        .per_cpu_gain           = 100,                  \
        .flags                  = SD_LOAD_BALANCE       \
index 9f3d4da261c478876f27352ce1d925de35427323..1e19cd00af25856445a44912051964b1fe456671 100644 (file)
@@ -39,7 +39,6 @@ static inline int node_to_first_cpu(int node)
        .max_interval           = 32,                   \
        .busy_factor            = 32,                   \
        .imbalance_pct          = 125,                  \
-       .cache_hot_time         = (10*1000000),         \
        .cache_nice_tries       = 1,                    \
        .per_cpu_gain           = 100,                  \
        .busy_idx               = 3,                    \
index 7d82bc56b9fae2f123326a936699819b4a5effa3..2fa7f27381b40b69d39562a5e6394b1a975ec803 100644 (file)
@@ -39,7 +39,6 @@ extern int __node_distance(int, int);
        .max_interval           = 32,                   \
        .busy_factor            = 32,                   \
        .imbalance_pct          = 125,                  \
-       .cache_hot_time         = (10*1000000),         \
        .cache_nice_tries       = 2,                    \
        .busy_idx               = 3,                    \
        .idle_idx               = 2,                    \
index 3b74c4bf2934b4e3a1bb561dbee934ebb79d787a..5d6b9228bba930f2bbfd77fa633c7927b2e73d10 100644 (file)
@@ -631,7 +631,14 @@ struct sched_domain {
 
 extern void partition_sched_domains(cpumask_t *partition1,
                                    cpumask_t *partition2);
-#endif /* CONFIG_SMP */
+
+/*
+ * Maximum cache size the migration-costs auto-tuning code will
+ * search from:
+ */
+extern unsigned int max_cache_size;
+
+#endif /* CONFIG_SMP */
 
 
 struct io_context;                     /* See blkdev.h */
index 3df1d474e5c56dcd4ce2ca4d371ad86fc945368b..315a5163d6a01a7f891251550feaf89716219803 100644 (file)
@@ -86,7 +86,6 @@
        .max_interval           = 2,                    \
        .busy_factor            = 8,                    \
        .imbalance_pct          = 110,                  \
-       .cache_hot_time         = 0,                    \
        .cache_nice_tries       = 0,                    \
        .per_cpu_gain           = 25,                   \
        .busy_idx               = 0,                    \
        .max_interval           = 4,                    \
        .busy_factor            = 64,                   \
        .imbalance_pct          = 125,                  \
-       .cache_hot_time         = (5*1000000/2),        \
        .cache_nice_tries       = 1,                    \
        .per_cpu_gain           = 100,                  \
        .busy_idx               = 2,                    \
index c0c60c926d5eafe1ebd57a0f298324933cb46507..98461de1ab651e642d81a69b8bac4850454b6e4f 100644 (file)
@@ -34,6 +34,7 @@
 #include <linux/notifier.h>
 #include <linux/profile.h>
 #include <linux/suspend.h>
+#include <linux/vmalloc.h>
 #include <linux/blkdev.h>
 #include <linux/delay.h>
 #include <linux/smp.h>
@@ -5082,7 +5083,470 @@ static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
 
 #define SD_NODES_PER_DOMAIN 16
 
+/*
+ * Self-tuning task migration cost measurement between source and target CPUs.
+ *
+ * This is done by measuring the cost of manipulating buffers of varying
+ * sizes. For a given buffer-size here are the steps that are taken:
+ *
+ * 1) the source CPU reads+dirties a shared buffer
+ * 2) the target CPU reads+dirties the same shared buffer
+ *
+ * We measure how long they take, in the following 4 scenarios:
+ *
+ *  - source: CPU1, target: CPU2 | cost1
+ *  - source: CPU2, target: CPU1 | cost2
+ *  - source: CPU1, target: CPU1 | cost3
+ *  - source: CPU2, target: CPU2 | cost4
+ *
+ * We then calculate the cost3+cost4-cost1-cost2 difference - this is
+ * the cost of migration.
+ *
+ * We then start off from a small buffer-size and iterate up to larger
+ * buffer sizes, in 5% steps - measuring each buffer-size separately, and
+ * doing a maximum search for the cost. (The maximum cost for a migration
+ * normally occurs when the working set size is around the effective cache
+ * size.)
+ */
+#define SEARCH_SCOPE           2
+#define MIN_CACHE_SIZE         (64*1024U)
+#define DEFAULT_CACHE_SIZE     (5*1024*1024U)
+#define ITERATIONS             2
+#define SIZE_THRESH            130
+#define COST_THRESH            130
+
+/*
+ * The migration cost is a function of 'domain distance'. Domain
+ * distance is the number of steps a CPU has to iterate down its
+ * domain tree to share a domain with the other CPU. The farther
+ * two CPUs are from each other, the larger the distance gets.
+ *
+ * Note that we use the distance only to cache measurement results,
+ * the distance value is not used numerically otherwise. When two
+ * CPUs have the same distance it is assumed that the migration
+ * cost is the same. (this is a simplification but quite practical)
+ */
+#define MAX_DOMAIN_DISTANCE 32
+
+static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
+               { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] = -1LL };
+
+/*
+ * Allow override of migration cost - in units of microseconds.
+ * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
+ * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
+ */
+static int __init migration_cost_setup(char *str)
+{
+       int ints[MAX_DOMAIN_DISTANCE+1], i;
+
+       str = get_options(str, ARRAY_SIZE(ints), ints);
+
+       printk("#ints: %d\n", ints[0]);
+       for (i = 1; i <= ints[0]; i++) {
+               migration_cost[i-1] = (unsigned long long)ints[i]*1000;
+               printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
+       }
+       return 1;
+}
+
+__setup ("migration_cost=", migration_cost_setup);
+
+/*
+ * Global multiplier (divisor) for migration-cutoff values,
+ * in percentiles. E.g. use a value of 150 to get 1.5 times
+ * longer cache-hot cutoff times.
+ *
+ * (We scale it from 100 to 128 to long long handling easier.)
+ */
+
+#define MIGRATION_FACTOR_SCALE 128
+
+static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
+
+static int __init setup_migration_factor(char *str)
+{
+       get_option(&str, &migration_factor);
+       migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
+       return 1;
+}
+
+__setup("migration_factor=", setup_migration_factor);
+
+/*
+ * Estimated distance of two CPUs, measured via the number of domains
+ * we have to pass for the two CPUs to be in the same span:
+ */
+static unsigned long domain_distance(int cpu1, int cpu2)
+{
+       unsigned long distance = 0;
+       struct sched_domain *sd;
+
+       for_each_domain(cpu1, sd) {
+               WARN_ON(!cpu_isset(cpu1, sd->span));
+               if (cpu_isset(cpu2, sd->span))
+                       return distance;
+               distance++;
+       }
+       if (distance >= MAX_DOMAIN_DISTANCE) {
+               WARN_ON(1);
+               distance = MAX_DOMAIN_DISTANCE-1;
+       }
+
+       return distance;
+}
+
+static unsigned int migration_debug;
+
+static int __init setup_migration_debug(char *str)
+{
+       get_option(&str, &migration_debug);
+       return 1;
+}
+
+__setup("migration_debug=", setup_migration_debug);
+
+/*
+ * Maximum cache-size that the scheduler should try to measure.
+ * Architectures with larger caches should tune this up during
+ * bootup. Gets used in the domain-setup code (i.e. during SMP
+ * bootup).
+ */
+unsigned int max_cache_size;
+
+static int __init setup_max_cache_size(char *str)
+{
+       get_option(&str, &max_cache_size);
+       return 1;
+}
+
+__setup("max_cache_size=", setup_max_cache_size);
+
+/*
+ * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
+ * is the operation that is timed, so we try to generate unpredictable
+ * cachemisses that still end up filling the L2 cache:
+ */
+static void touch_cache(void *__cache, unsigned long __size)
+{
+       unsigned long size = __size/sizeof(long), chunk1 = size/3,
+                       chunk2 = 2*size/3;
+       unsigned long *cache = __cache;
+       int i;
+
+       for (i = 0; i < size/6; i += 8) {
+               switch (i % 6) {
+                       case 0: cache[i]++;
+                       case 1: cache[size-1-i]++;
+                       case 2: cache[chunk1-i]++;
+                       case 3: cache[chunk1+i]++;
+                       case 4: cache[chunk2-i]++;
+                       case 5: cache[chunk2+i]++;
+               }
+       }
+}
+
+/*
+ * Measure the cache-cost of one task migration. Returns in units of nsec.
+ */
+static unsigned long long measure_one(void *cache, unsigned long size,
+                                     int source, int target)
+{
+       cpumask_t mask, saved_mask;
+       unsigned long long t0, t1, t2, t3, cost;
+
+       saved_mask = current->cpus_allowed;
+
+       /*
+        * Flush source caches to RAM and invalidate them:
+        */
+       sched_cacheflush();
+
+       /*
+        * Migrate to the source CPU:
+        */
+       mask = cpumask_of_cpu(source);
+       set_cpus_allowed(current, mask);
+       WARN_ON(smp_processor_id() != source);
+
+       /*
+        * Dirty the working set:
+        */
+       t0 = sched_clock();
+       touch_cache(cache, size);
+       t1 = sched_clock();
+
+       /*
+        * Migrate to the target CPU, dirty the L2 cache and access
+        * the shared buffer. (which represents the working set
+        * of a migrated task.)
+        */
+       mask = cpumask_of_cpu(target);
+       set_cpus_allowed(current, mask);
+       WARN_ON(smp_processor_id() != target);
+
+       t2 = sched_clock();
+       touch_cache(cache, size);
+       t3 = sched_clock();
+
+       cost = t1-t0 + t3-t2;
+
+       if (migration_debug >= 2)
+               printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
+                       source, target, t1-t0, t1-t0, t3-t2, cost);
+       /*
+        * Flush target caches to RAM and invalidate them:
+        */
+       sched_cacheflush();
+
+       set_cpus_allowed(current, saved_mask);
+
+       return cost;
+}
+
+/*
+ * Measure a series of task migrations and return the average
+ * result. Since this code runs early during bootup the system
+ * is 'undisturbed' and the average latency makes sense.
+ *
+ * The algorithm in essence auto-detects the relevant cache-size,
+ * so it will properly detect different cachesizes for different
+ * cache-hierarchies, depending on how the CPUs are connected.
+ *
+ * Architectures can prime the upper limit of the search range via
+ * max_cache_size, otherwise the search range defaults to 20MB...64K.
+ */
+static unsigned long long
+measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
+{
+       unsigned long long cost1, cost2;
+       int i;
+
+       /*
+        * Measure the migration cost of 'size' bytes, over an
+        * average of 10 runs:
+        *
+        * (We perturb the cache size by a small (0..4k)
+        *  value to compensate size/alignment related artifacts.
+        *  We also subtract the cost of the operation done on
+        *  the same CPU.)
+        */
+       cost1 = 0;
+
+       /*
+        * dry run, to make sure we start off cache-cold on cpu1,
+        * and to get any vmalloc pagefaults in advance:
+        */
+       measure_one(cache, size, cpu1, cpu2);
+       for (i = 0; i < ITERATIONS; i++)
+               cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
+
+       measure_one(cache, size, cpu2, cpu1);
+       for (i = 0; i < ITERATIONS; i++)
+               cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
+
+       /*
+        * (We measure the non-migrating [cached] cost on both
+        *  cpu1 and cpu2, to handle CPUs with different speeds)
+        */
+       cost2 = 0;
+
+       measure_one(cache, size, cpu1, cpu1);
+       for (i = 0; i < ITERATIONS; i++)
+               cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
+
+       measure_one(cache, size, cpu2, cpu2);
+       for (i = 0; i < ITERATIONS; i++)
+               cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
+
+       /*
+        * Get the per-iteration migration cost:
+        */
+       do_div(cost1, 2*ITERATIONS);
+       do_div(cost2, 2*ITERATIONS);
+
+       return cost1 - cost2;
+}
+
+static unsigned long long measure_migration_cost(int cpu1, int cpu2)
+{
+       unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
+       unsigned int max_size, size, size_found = 0;
+       long long cost = 0, prev_cost;
+       void *cache;
+
+       /*
+        * Search from max_cache_size*5 down to 64K - the real relevant
+        * cachesize has to lie somewhere inbetween.
+        */
+       if (max_cache_size) {
+               max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
+               size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
+       } else {
+               /*
+                * Since we have no estimation about the relevant
+                * search range
+                */
+               max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
+               size = MIN_CACHE_SIZE;
+       }
+
+       if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
+               printk("cpu %d and %d not both online!\n", cpu1, cpu2);
+               return 0;
+       }
+
+       /*
+        * Allocate the working set:
+        */
+       cache = vmalloc(max_size);
+       if (!cache) {
+               printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
+               return 1000000; // return 1 msec on very small boxen
+       }
+
+       while (size <= max_size) {
+               prev_cost = cost;
+               cost = measure_cost(cpu1, cpu2, cache, size);
+
+               /*
+                * Update the max:
+                */
+               if (cost > 0) {
+                       if (max_cost < cost) {
+                               max_cost = cost;
+                               size_found = size;
+                       }
+               }
+               /*
+                * Calculate average fluctuation, we use this to prevent
+                * noise from triggering an early break out of the loop:
+                */
+               fluct = abs(cost - prev_cost);
+               avg_fluct = (avg_fluct + fluct)/2;
+
+               if (migration_debug)
+                       printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
+                               cpu1, cpu2, size,
+                               (long)cost / 1000000,
+                               ((long)cost / 100000) % 10,
+                               (long)max_cost / 1000000,
+                               ((long)max_cost / 100000) % 10,
+                               domain_distance(cpu1, cpu2),
+                               cost, avg_fluct);
+
+               /*
+                * If we iterated at least 20% past the previous maximum,
+                * and the cost has dropped by more than 20% already,
+                * (taking fluctuations into account) then we assume to
+                * have found the maximum and break out of the loop early:
+                */
+               if (size_found && (size*100 > size_found*SIZE_THRESH))
+                       if (cost+avg_fluct <= 0 ||
+                               max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
+
+                               if (migration_debug)
+                                       printk("-> found max.\n");
+                               break;
+                       }
+               /*
+                * Increase the cachesize in 5% steps:
+                */
+               size = size * 20 / 19;
+       }
+
+       if (migration_debug)
+               printk("[%d][%d] working set size found: %d, cost: %Ld\n",
+                       cpu1, cpu2, size_found, max_cost);
+
+       vfree(cache);
+
+       /*
+        * A task is considered 'cache cold' if at least 2 times
+        * the worst-case cost of migration has passed.
+        *
+        * (this limit is only listened to if the load-balancing
+        * situation is 'nice' - if there is a large imbalance we
+        * ignore it for the sake of CPU utilization and
+        * processing fairness.)
+        */
+       return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
+}
+
+static void calibrate_migration_costs(const cpumask_t *cpu_map)
+{
+       int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
+       unsigned long j0, j1, distance, max_distance = 0;
+       struct sched_domain *sd;
+
+       j0 = jiffies;
+
+       /*
+        * First pass - calculate the cacheflush times:
+        */
+       for_each_cpu_mask(cpu1, *cpu_map) {
+               for_each_cpu_mask(cpu2, *cpu_map) {
+                       if (cpu1 == cpu2)
+                               continue;
+                       distance = domain_distance(cpu1, cpu2);
+                       max_distance = max(max_distance, distance);
+                       /*
+                        * No result cached yet?
+                        */
+                       if (migration_cost[distance] == -1LL)
+                               migration_cost[distance] =
+                                       measure_migration_cost(cpu1, cpu2);
+               }
+       }
+       /*
+        * Second pass - update the sched domain hierarchy with
+        * the new cache-hot-time estimations:
+        */
+       for_each_cpu_mask(cpu, *cpu_map) {
+               distance = 0;
+               for_each_domain(cpu, sd) {
+                       sd->cache_hot_time = migration_cost[distance];
+                       distance++;
+               }
+       }
+       /*
+        * Print the matrix:
+        */
+       if (migration_debug)
+               printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
+                       max_cache_size,
+#ifdef CONFIG_X86
+                       cpu_khz/1000
+#else
+                       -1
+#endif
+               );
+       printk("migration_cost=");
+       for (distance = 0; distance <= max_distance; distance++) {
+               if (distance)
+                       printk(",");
+               printk("%ld", (long)migration_cost[distance] / 1000);
+       }
+       printk("\n");
+       j1 = jiffies;
+       if (migration_debug)
+               printk("migration: %ld seconds\n", (j1-j0)/HZ);
+
+       /*
+        * Move back to the original CPU. NUMA-Q gets confused
+        * if we migrate to another quad during bootup.
+        */
+       if (raw_smp_processor_id() != orig_cpu) {
+               cpumask_t mask = cpumask_of_cpu(orig_cpu),
+                       saved_mask = current->cpus_allowed;
+
+               set_cpus_allowed(current, mask);
+               set_cpus_allowed(current, saved_mask);
+       }
+}
+
 #ifdef CONFIG_NUMA
+
 /**
  * find_next_best_node - find the next node to include in a sched_domain
  * @node: node whose sched_domain we're building
@@ -5448,6 +5912,10 @@ next_sg:
 #endif
                cpu_attach_domain(sd, i);
        }
+       /*
+        * Tune cache-hot values:
+        */
+       calibrate_migration_costs(cpu_map);
 }
 /*
  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.