Emulated floating point instructions don't ensure that the PF_USED_MATH
flag is set for the task. This results in a couple of inconsistencies:
- ptrace will return the default initial state of FP registers rather
than the values actually stored in struct thread_struct, hiding
state that has been updated by emulated floating point instructions.
- If a task migrates to a CPU with an FPU after having emulated
floating point instructions then its floating point register state
will be reset to the default ~0 bit pattern, losing state from the
emulated instructions.
Fix this by calling init_fp_ctx() from fpu_emulator_cop1Handler() to
consistently initialize FP state if it was previously uninitialized,
setting the PF_USED_MATH flag in the process.
All callers of fpu_emulator_cop1Handler() either call lose_fpu(1) before
it in order to save any live FPU registers to struct thread_struct, or
in the case of do_cpu() already know that the task does not own an FPU
so lose_fpu(1) would be a no-op. Since we know that saving FP context
will be unnecessary in the case where FP context was just initialized we
move this call into fpu_emulator_cop1Handler() too, providing
consistency & avoiding needless duplication.
Calls to own_fpu(1) are common after return from
fpu_emulator_cop1Handler() too, but this would not be a no-op in the
do_cpu() case so these are left as-is. A potential future improvement
could be to have fpu_emulator_cop1Handler() restore FPU state
automatically only if it saved it, though this may not be optimal if
some callers are better off without their current calls to own_fpu(1).
One potential example of this could be mipsr2_decoder() which as-is
could end up saving & restoring FP context repeatedly & unnecessarily if
emulating multiple FP instructions.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21003/
Cc: linux-mips@linux-mips.org
regs->regs[31] = r31;
regs->cp0_epc = epc;
- if (!init_fp_ctx(current))
- lose_fpu(1);
-
err = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
&fault_addr);
regs->cp0_epc = old_epc;
regs->regs[31] = old_ra;
- /* Save the FP context to struct thread_struct */
- lose_fpu(1);
-
/* Run the emulator */
sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
&fault_addr);
* register operands before invoking the emulator, which seems
* a bit extreme for what should be an infrequent event.
*/
- /* Ensure 'resume' not overwrite saved fp context again. */
- lose_fpu(1);
/* Run the emulator */
sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
die_if_kernel("Unaligned FP access in kernel code", regs);
BUG_ON(!used_math());
- lose_fpu(1); /* Save FPU state for the emulator. */
res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
&fault_addr);
own_fpu(1); /* Restore FPU state. */
BUG_ON(!used_math());
BUG_ON(!is_fpu_owner());
- lose_fpu(1); /* save the FPU state for the emulator */
res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
&fault_addr);
own_fpu(1); /* restore FPU state */
u16 *instr_ptr;
int sig = 0;
+ /*
+ * Initialize context if it hasn't been used already, otherwise ensure
+ * it has been saved to struct thread_struct.
+ */
+ if (!init_fp_ctx(current))
+ lose_fpu(1);
+
oldepc = xcp->cp0_epc;
do {
prevepc = xcp->cp0_epc;