/*
- * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved.
+ * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
- _set_endian=1 \
+ _init_sctlr=1 \
_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
_init_memory=1 \
/*
- * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
+ * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
- _set_endian=1 \
+ _init_sctlr=1 \
_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
_init_memory=1 \
* bl31_entrypoint() during the cold boot flow, so the cold/warm boot
* and primary/secondary CPU logic should not be executed in this case.
*
- * Also, assume that the previous bootloader has already set up the CPU
- * endianness and has initialised the memory.
+ * Also, assume that the previous bootloader has already initialised the
+ * SCTLR_EL3, including the endianness, and has initialised the memory.
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
- _set_endian=0 \
+ _init_sctlr=0 \
_warm_boot_mailbox=0 \
_secondary_cold_boot=0 \
_init_memory=0 \
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
- _set_endian=1 \
+ _init_sctlr=1 \
_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
_init_memory=1 \
* 'el3_entrypoint_common' must be skipped:
*
* - Only when the platform bypasses the BL1/BL31 entrypoint by
- * programming the reset address do we need to set the CPU endianness.
+ * programming the reset address do we need to initialise SCTLR_EL3.
* In other cases, we assume this has been taken care by the
* entrypoint code.
*
* it has been done once and for all on the cold boot path.
*/
el3_entrypoint_common \
- _set_endian=PROGRAMMABLE_RESET_ADDRESS \
+ _init_sctlr=PROGRAMMABLE_RESET_ADDRESS \
_warm_boot_mailbox=0 \
_secondary_cold_boot=0 \
_init_memory=0 \
* sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
* and primary/secondary CPU logic should not be executed in this case.
*
- * Also, assume that the previous bootloader has already set up the CPU
- * endianness and has initialised the memory.
+ * Also, assume that the previous bootloader has already initialised the
+ * SCTLR, including the CPU endianness, and has initialised the memory.
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
- _set_endian=0 \
+ _init_sctlr=0 \
_warm_boot_mailbox=0 \
_secondary_cold_boot=0 \
_init_memory=0 \
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
- _set_endian=1 \
+ _init_sctlr=1 \
_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
_init_memory=1 \
* 'el3_entrypoint_common' must be skipped:
*
* - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
- * programming the reset address do we need to set the CPU endianness.
+ * programming the reset address do we need to initialied the SCTLR.
* In other cases, we assume this has been taken care by the
* entrypoint code.
*
* it has been done once and for all on the cold boot path.
*/
el3_entrypoint_common \
- _set_endian=PROGRAMMABLE_RESET_ADDRESS \
+ _init_sctlr=PROGRAMMABLE_RESET_ADDRESS \
_warm_boot_mailbox=0 \
_secondary_cold_boot=0 \
_init_memory=0 \
- `DAIF`. The SError interrupt is enabled by clearing the SError interrupt
mask bit.
+ - `MDCR_EL3`. The trap controls, `MDCR_EL3.TDOSA`, `MDCR_EL3.TDA` and
+ `MDCR_EL3.TPM`, are set so that accesses to the registers they control
+ do not trap to EL3. AArch64 Secure self-hosted debug is disabled by
+ setting the `MDCR_EL3.SDD` bit. Also `MDCR_EL3.SPD32` is set to
+ disable AArch32 Secure self-hosted privileged debug from S-EL1.
+
* Control register setup (for AArch32)
- `SCTLR`. Instruction cache is enabled by setting the `SCTLR.I` bit.
Alignment checking is enabled by setting the `SCTLR.A` bit.
- `CPSR.A`. The Asynchronous data abort interrupt is enabled by clearing
the Asynchronous data abort interrupt mask bit.
+ - `SDCR`. The `SDCR.SPD` field is set to disable AArch32 Secure
+ self-hosted privileged debug.
+
#### Platform initialization
On ARM platforms, BL1 performs the following platform initializations:
*/
.macro el3_arch_init_common _exception_vectors
/* ---------------------------------------------------------------------
- * Enable the instruction cache and alignment checks
+ * SCTLR has already been initialised - read current value before
+ * modifying.
+ *
+ * SCTLR.I: Enable the instruction cache.
+ *
+ * SCTLR.A: Enable Alignment fault checking. All instructions that load
+ * or store one or more registers have an alignment check that the
+ * address being accessed is aligned to the size of the data element(s)
+ * being accessed.
* ---------------------------------------------------------------------
*/
- ldr r1, =(SCTLR_RES1 | SCTLR_I_BIT | SCTLR_A_BIT)
+ ldr r1, =(SCTLR_I_BIT | SCTLR_A_BIT)
ldcopr r0, SCTLR
orr r0, r0, r1
stcopr r0, SCTLR
stcopr r0, MVBAR
isb
- /* -----------------------------------------------------
- * Enable the SIF bit to disable instruction fetches
- * from Non-secure memory.
- * -----------------------------------------------------
+ /* ---------------------------------------------------------------------
+ * Initialise SCR, setting all fields rather than relying on the hw.
+ *
+ * SCR.SIF: Enabled so that Secure state instruction fetches from
+ * Non-secure memory are not permitted.
+ * ---------------------------------------------------------------------
*/
- ldcopr r0, SCR
- orr r0, r0, #SCR_SIF_BIT
+ ldr r0, =(SCR_RESET_VAL | SCR_SIF_BIT)
stcopr r0, SCR
/* -----------------------------------------------------
cpsie a
isb
- /* Enable access to Advanced SIMD registers */
+ /* ---------------------------------------------------------------------
+ * Initialise NSACR, setting all the fields, except for the
+ * IMPLEMENTATION DEFINED field, rather than relying on the hw. Some
+ * fields are architecturally UNKNOWN on reset.
+ *
+ * NSACR_ENABLE_FP_ACCESS: Represents NSACR.cp11 and NSACR.cp10. The
+ * cp11 field is ignored, but is set to same value as cp10. The cp10
+ * field is set to allow access to Advanced SIMD and floating point
+ * features from both Security states.
+ * ---------------------------------------------------------------------
+ */
ldcopr r0, NSACR
- bic r0, r0, #NSASEDIS_BIT
- bic r0, r0, #NSTRCDIS_BIT
- orr r0, r0, #(NASCR_CP10_BIT | NASCR_CP11_BIT)
+ and r0, r0, #NSACR_IMP_DEF_MASK
+ orr r0, r0, #(NSACR_RESET_VAL | NSACR_ENABLE_FP_ACCESS)
stcopr r0, NSACR
isb
- /*
- * Enable access to Advanced SIMD, Floating point and to the Trace
- * functionality as well.
+ /* ---------------------------------------------------------------------
+ * Initialise CPACR, setting all fields rather than relying on hw. Some
+ * fields are architecturally UNKNOWN on reset.
+ *
+ * CPACR.TRCDIS: Trap control for PL0 and PL1 System register accesses
+ * to trace registers. Set to zero to allow access.
+ *
+ * CPACR_ENABLE_FP_ACCESS: Represents CPACR.cp11 and CPACR.cp10. The
+ * cp11 field is ignored, but is set to same value as cp10. The cp10
+ * field is set to allow full access from PL0 and PL1 to floating-point
+ * and Advanced SIMD features.
+ * ---------------------------------------------------------------------
*/
- ldcopr r0, CPACR
- bic r0, r0, #ASEDIS_BIT
- bic r0, r0, #TRCDIS_BIT
- orr r0, r0, #CPACR_ENABLE_FP_ACCESS
+ ldr r0, =((CPACR_RESET_VAL | CPACR_ENABLE_FP_ACCESS) & ~(TRCDIS_BIT))
stcopr r0, CPACR
isb
- vmrs r0, FPEXC
- orr r0, r0, #FPEXC_EN_BIT
+ /* ---------------------------------------------------------------------
+ * Initialise FPEXC, setting all fields rather than relying on hw. Some
+ * fields are architecturally UNKNOWN on reset and are set to zero
+ * except for field(s) listed below.
+ *
+ * FPEXC.EN: Enable access to Advanced SIMD and floating point features
+ * from all exception levels.
+ * ---------------------------------------------------------------------
+ */
+ ldr r0, =(FPEXC_RESET_VAL | FPEXC_EN_BIT)
vmsr FPEXC, r0
isb
- /* Disable secure self-hosted invasive debug. */
- ldr r0, =SDCR_DEF_VAL
+ /* ---------------------------------------------------------------------
+ * Initialise SDCR, setting all the fields rather than relying on hw.
+ *
+ * SDCR.SPD: Disable AArch32 privileged debug. Debug exceptions from
+ * Secure EL1 are disabled.
+ * ---------------------------------------------------------------------
+ */
+ ldr r0, =(SDCR_RESET_VAL | SDCR_SPD(SDCR_SPD_DISABLE))
stcopr r0, SDCR
.endm
* why this macro is parameterised ; each parameter allows to enable/disable
* some actions.
*
- * _set_endian:
- * Whether the macro needs to configure the endianness of data accesses.
+ * _init_sctlr:
+ * Whether the macro needs to initialise the SCTLR register including
+ * configuring the endianness of data accesses.
*
* _warm_boot_mailbox:
* Whether the macro needs to detect the type of boot (cold/warm). The
* -----------------------------------------------------------------------------
*/
.macro el3_entrypoint_common \
- _set_endian, _warm_boot_mailbox, _secondary_cold_boot, \
+ _init_sctlr, _warm_boot_mailbox, _secondary_cold_boot, \
_init_memory, _init_c_runtime, _exception_vectors
/* Make sure we are in Secure Mode */
ASM_ASSERT(eq)
#endif
- .if \_set_endian
+ .if \_init_sctlr
/* -------------------------------------------------------------
- * Set the CPU endianness before doing anything that might
- * involve memory reads or writes.
+ * This is the initialisation of SCTLR and so must ensure that
+ * all fields are explicitly set rather than relying on hw. Some
+ * fields reset to an IMPLEMENTATION DEFINED value.
+ *
+ * SCTLR.TE: Set to zero so that exceptions to an Exception
+ * Level executing at PL1 are taken to A32 state.
+ *
+ * SCTLR.EE: Set the CPU endianness before doing anything that
+ * might involve memory reads or writes. Set to zero to select
+ * Little Endian.
+ *
+ * SCTLR.V: Set to zero to select the normal exception vectors
+ * with base address held in VBAR.
* -------------------------------------------------------------
*/
- ldcopr r0, SCTLR
- bic r0, r0, #SCTLR_EE_BIT
+ ldr r0, =(SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_EE_BIT | SCTLR_V_BIT))
stcopr r0, SCTLR
isb
- .endif /* _set_endian */
+ .endif /* _init_sctlr */
/* Switch to monitor mode */
cps #MODE32_mon
*/
.macro el3_arch_init_common _exception_vectors
/* ---------------------------------------------------------------------
- * Enable the instruction cache, stack pointer and data access alignment
- * checks
+ * SCTLR_EL3 has already been initialised - read current value before
+ * modifying.
+ *
+ * SCTLR_EL3.I: Enable the instruction cache.
+ *
+ * SCTLR_EL3.SA: Enable Stack Aligment check. A SP alignment fault
+ * exception is generated if a load or store instruction executed at
+ * EL3 uses the SP as the base address and the SP is not aligned to a
+ * 16-byte boundary.
+ *
+ * SCTLR_EL3.A: Enable Alignment fault checking. All instructions that
+ * load or store one or more registers have an alignment check that the
+ * address being accessed is aligned to the size of the data element(s)
+ * being accessed.
* ---------------------------------------------------------------------
*/
mov x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
isb
/* ---------------------------------------------------------------------
- * Early set RES1 bits in SCR_EL3. Set EA bit to catch both
- * External Aborts and SError Interrupts in EL3 and also the SIF bit
- * to disable instruction fetches from Non-secure memory.
+ * Initialise SCR_EL3, setting all fields rather than relying on hw.
+ * All fields are architecturally UNKNOWN on reset. The following fields
+ * do not change during the TF lifetime. The remaining fields are set to
+ * zero here but are updated ahead of transitioning to a lower EL in the
+ * function cm_init_context_common().
+ *
+ * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
+ * EL2, EL1 and EL0 are not trapped to EL3.
+ *
+ * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
+ * EL2, EL1 and EL0 are not trapped to EL3.
+ *
+ * SCR_EL3.SIF: Set to one to disable instruction fetches from
+ * Non-secure memory.
+ *
+ * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
+ * both Security states and both Execution states.
+ *
+ * SCR_EL3.EA: Set to one to route External Aborts and SError Interrupts
+ * to EL3 when executing at any EL.
* ---------------------------------------------------------------------
*/
- mov x0, #(SCR_RES1_BITS | SCR_EA_BIT | SCR_SIF_BIT)
+ mov x0, #((SCR_RESET_VAL | SCR_EA_BIT | SCR_SIF_BIT) \
+ & ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT))
msr scr_el3, x0
/* ---------------------------------------------------------------------
- * Disable secure self-hosted invasive debug.
+ * Initialise MDCR_EL3, setting all fields rather than relying on hw.
+ * Some fields are architecturally UNKNOWN on reset.
+ *
+ * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
+ * Debug exceptions, other than Breakpoint Instruction exceptions, are
+ * disabled from all ELs in Secure state.
+ *
+ * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
+ * privileged debug from S-EL1.
+ *
+ * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
+ * access to the powerdown debug registers do not trap to EL3.
+ *
+ * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
+ * debug registers, other than those registers that are controlled by
+ * MDCR_EL3.TDOSA.
+ *
+ * MDCR_EL3.TPM: Set to zero so that EL0, EL1, and EL2 System register
+ * accesses to all Performance Monitors registers do not trap to EL3.
* ---------------------------------------------------------------------
*/
- mov_imm x0, MDCR_DEF_VAL
+ mov_imm x0, ((MDCR_EL3_RESET_VAL | MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE)) \
+ & ~(MDCR_TDOSA_BIT | MDCR_TDA_BIT | MDCR_TPM_BIT))
msr mdcr_el3, x0
/* ---------------------------------------------------------------------
msr daifclr, #DAIF_ABT_BIT
/* ---------------------------------------------------------------------
- * The initial state of the Architectural feature trap register
- * (CPTR_EL3) is unknown and it must be set to a known state. All
- * feature traps are disabled. Some bits in this register are marked as
- * reserved and should not be modified.
+ * Initialise CPTR_EL3, setting all fields rather than relying on hw.
+ * All fields are architecturally UNKNOWN on reset.
*
- * CPTR_EL3.TCPAC: This causes a direct access to the CPACR_EL1 from EL1
- * or the CPTR_EL2 from EL2 to trap to EL3 unless it is trapped at EL2.
+ * CPTR_EL3.TCPAC: Set to zero so that any accesses to CPACR_EL1,
+ * CPTR_EL2, CPACR, or HCPTR do not trap to EL3.
*
- * CPTR_EL3.TTA: This causes access to the Trace functionality to trap
- * to EL3 when executed from EL0, EL1, EL2, or EL3. If system register
- * access to trace functionality is not supported, this bit is RES0.
+ * CPTR_EL3.TTA: Set to zero so that System register accesses to the
+ * trace registers do not trap to EL3.
*
- * CPTR_EL3.TFP: This causes instructions that access the registers
- * associated with Floating Point and Advanced SIMD execution to trap
- * to EL3 when executed from any exception level, unless trapped to EL1
- * or EL2.
+ * CPTR_EL3.TFP: Set to zero so that accesses to Advanced SIMD and
+ * floating-point functionality do not trap to EL3.
* ---------------------------------------------------------------------
*/
- mrs x0, cptr_el3
- bic w0, w0, #TCPAC_BIT
- bic w0, w0, #TTA_BIT
- bic w0, w0, #TFP_BIT
+ mov_imm x0, (CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TTA_BIT | TFP_BIT))
msr cptr_el3, x0
.endm
* why this macro is parameterised ; each parameter allows to enable/disable
* some actions.
*
- * _set_endian:
- * Whether the macro needs to configure the endianness of data accesses.
+ * _init_sctlr:
+ * Whether the macro needs to initialise SCTLR_EL3, including configuring
+ * the endianness of data accesses.
*
* _warm_boot_mailbox:
* Whether the macro needs to detect the type of boot (cold/warm). The
* -----------------------------------------------------------------------------
*/
.macro el3_entrypoint_common \
- _set_endian, _warm_boot_mailbox, _secondary_cold_boot, \
+ _init_sctlr, _warm_boot_mailbox, _secondary_cold_boot, \
_init_memory, _init_c_runtime, _exception_vectors
- .if \_set_endian
+ .if \_init_sctlr
/* -------------------------------------------------------------
- * Set the CPU endianness before doing anything that might
- * involve memory reads or writes.
+ * This is the initialisation of SCTLR_EL3 and so must ensure
+ * that all fields are explicitly set rather than relying on hw.
+ * Some fields reset to an IMPLEMENTATION DEFINED value and
+ * others are architecturally UNKNOWN on reset.
+ *
+ * SCTLR.EE: Set the CPU endianness before doing anything that
+ * might involve memory reads or writes. Set to zero to select
+ * Little Endian.
+ *
+ * SCTLR_EL3.WXN: For the EL3 translation regime, this field can
+ * force all memory regions that are writeable to be treated as
+ * XN (Execute-never). Set to zero so that this control has no
+ * effect on memory access permissions.
+ *
+ * SCTLR_EL3.SA: Set to zero to disable Stack Aligment check.
+ *
+ * SCTLR_EL3.A: Set to zero to disable Alignment fault checking.
* -------------------------------------------------------------
*/
- mrs x0, sctlr_el3
- bic x0, x0, #SCTLR_EE_BIT
+ mov_imm x0, (SCTLR_RESET_VAL & ~(SCTLR_EE_BIT | SCTLR_WXN_BIT \
+ | SCTLR_SA_BIT | SCTLR_A_BIT))
msr sctlr_el3, x0
isb
- .endif /* _set_endian */
+ .endif /* _init_sctlr */
.if \_warm_boot_mailbox
/* -------------------------------------------------------------
((x) = ((x) & ~PARAM_EP_SECURITY_MASK) | (security))
#define EP_EE_MASK U(0x2)
+#define EP_EE_SHIFT 1
#define EP_EE_LITTLE U(0x0)
#define EP_EE_BIG U(0x2)
#define EP_GET_EE(x) (x & EP_EE_MASK)
#define SCTLR_TRE_BIT (1 << 28)
#define SCTLR_AFE_BIT (1 << 29)
#define SCTLR_TE_BIT (1 << 30)
+#define SCTLR_RESET_VAL (SCTLR_RES1 | SCTLR_NTWE_BIT | \
+ SCTLR_NTWI_BIT | SCTLR_CP15BEN_BIT)
/* SDCR definitions */
#define SDCR_SPD(x) ((x) << 14)
#define SDCR_SPD_LEGACY 0x0
#define SDCR_SPD_DISABLE 0x2
#define SDCR_SPD_ENABLE 0x3
+#define SDCR_RESET_VAL 0x0
+#if !ERROR_DEPRECATED
#define SDCR_DEF_VAL SDCR_SPD(SDCR_SPD_DISABLE)
+#endif
/* HSCTLR definitions */
#define HSCTLR_RES1 ((1 << 29) | (1 << 28) | (1 << 23) | (1 << 22) \
#define SCR_IRQ_BIT (1 << 1)
#define SCR_NS_BIT (1 << 0)
#define SCR_VALID_BIT_MASK 0x33ff
+#define SCR_RESET_VAL 0x0
#define GET_NS_BIT(scr) ((scr) & SCR_NS_BIT)
#define HCR_AMO_BIT (1 << 5)
#define HCR_IMO_BIT (1 << 4)
#define HCR_FMO_BIT (1 << 3)
+#define HCR_RESET_VAL 0x0
/* CNTHCTL definitions */
-#define EVNTEN_BIT (1 << 2)
+#define CNTHCTL_RESET_VAL 0x0
#define PL1PCEN_BIT (1 << 1)
#define PL1PCTEN_BIT (1 << 0)
#define EVNTI_MASK 0xf
/* HCPTR definitions */
+#define HCPTR_RES1 ((1 << 13) | (1<<12) | 0x3ff)
#define TCPAC_BIT (1 << 31)
#define TTA_BIT (1 << 20)
#define TCP11_BIT (1 << 10)
#define TCP10_BIT (1 << 10)
+#define HCPTR_RESET_VAL HCPTR_RES1
+
+/* VTTBR defintions */
+#define VTTBR_RESET_VAL ULL(0x0)
+#define VTTBR_VMID_MASK ULL(0xff)
+#define VTTBR_VMID_SHIFT 48
+#define VTTBR_BADDR_MASK 0xffffffffffff
+#define VTTBR_BADDR_SHIFT 0
+
+/* HDCR definitions */
+#define HDCR_RESET_VAL 0x0
+
+/* HSTR definitions */
+#define HSTR_RESET_VAL 0x0
+
+/* CNTHP_CTL definitions */
+#define CNTHP_CTL_RESET_VAL 0x0
/* NASCR definitions */
#define NSASEDIS_BIT (1 << 15)
#define NSTRCDIS_BIT (1 << 20)
+/* NOTE: correct typo in the definitions */
+#if !ERROR_DEPRECATED
#define NASCR_CP11_BIT (1 << 11)
#define NASCR_CP10_BIT (1 << 10)
+#endif
+#define NSACR_CP11_BIT (1 << 11)
+#define NSACR_CP10_BIT (1 << 10)
+#define NSACR_IMP_DEF_MASK (0x7 << 16)
+#define NSACR_ENABLE_FP_ACCESS (NSACR_CP11_BIT | NSACR_CP10_BIT)
+#define NSACR_RESET_VAL 0x0
/* CPACR definitions */
#define ASEDIS_BIT (1 << 31)
#define CPACR_CP10_SHIFT 20
#define CPACR_ENABLE_FP_ACCESS (0x3 << CPACR_CP11_SHIFT |\
0x3 << CPACR_CP10_SHIFT)
+#define CPACR_RESET_VAL 0x0
/* FPEXC definitions */
+#define FPEXC_RES1 ((1 << 10) | (1 << 9) | (1 << 8))
#define FPEXC_EN_BIT (1 << 30)
+#define FPEXC_RESET_VAL FPEXC_RES1
/* SPSR/CPSR definitions */
#define SPSR_FIQ_BIT (1 << 0)
#define HSCTLR p15, 4, c1, c0, 0
#define HCR p15, 4, c1, c1, 0
#define HCPTR p15, 4, c1, c1, 2
+#define HSTR p15, 4, c1, c1, 3
#define CNTHCTL p15, 4, c14, c1, 0
#define CNTKCTL p15, 0, c14, c1, 0
#define VPIDR p15, 4, c0, c0, 0
DEFINE_COPROCR_RW_FUNCS_64(ttbr1, TTBR1_64)
DEFINE_COPROCR_RW_FUNCS_64(cntvoff, CNTVOFF_64)
DEFINE_COPROCR_RW_FUNCS(csselr, CSSELR)
+DEFINE_COPROCR_RW_FUNCS(hstr, HSTR)
DEFINE_COPROCR_RW_FUNCS(icc_sre_el1, ICC_SRE)
DEFINE_COPROCR_RW_FUNCS(icc_sre_el2, ICC_HSRE)
& ID_PFR1_VIRTEXT_MASK)
/* SCTLR definitions */
-#define SCTLR_EL2_RES1 ((U(1) << 29) | (U(1) << 28) | (U(1) << 23) | \
+#define SCTLR_EL2_RES1 ((U(1) << 29) | (U(1) << 28) | (U(1) << 23) | \
(U(1) << 22) | (U(1) << 18) | (U(1) << 16) | \
(U(1) << 11) | (U(1) << 5) | (U(1) << 4))
-#define SCTLR_EL1_RES1 ((U(1) << 29) | (U(1) << 28) | (U(1) << 23) | \
+#define SCTLR_EL1_RES1 ((U(1) << 29) | (U(1) << 28) | (U(1) << 23) | \
(U(1) << 22) | (U(1) << 20) | (U(1) << 11))
#define SCTLR_AARCH32_EL1_RES1 \
((U(1) << 23) | (U(1) << 22) | (U(1) << 11) | \
(U(1) << 4) | (U(1) << 3))
+#define SCTLR_EL3_RES1 ((U(1) << 29) | (U(1) << 28) | (U(1) << 23) | \
+ (U(1) << 22) | (U(1) << 18) | (U(1) << 16) | \
+ (U(1) << 11) | (U(1) << 5) | (U(1) << 4))
+
#define SCTLR_M_BIT (U(1) << 0)
#define SCTLR_A_BIT (U(1) << 1)
#define SCTLR_C_BIT (U(1) << 2)
#define SCTLR_NTWE_BIT (U(1) << 18)
#define SCTLR_WXN_BIT (U(1) << 19)
#define SCTLR_EE_BIT (U(1) << 25)
+#define SCTLR_RESET_VAL SCTLR_EL3_RES1
/* CPACR_El1 definitions */
#define CPACR_EL1_FPEN(x) ((x) << 20)
#define SCR_IRQ_BIT (U(1) << 1)
#define SCR_NS_BIT (U(1) << 0)
#define SCR_VALID_BIT_MASK U(0x2f8f)
+#define SCR_RESET_VAL SCR_RES1_BITS
-/* MDCR definitions */
+/* MDCR_EL3 definitions */
#define MDCR_SPD32(x) ((x) << 14)
#define MDCR_SPD32_LEGACY U(0x0)
#define MDCR_SPD32_DISABLE U(0x2)
#define MDCR_SPD32_ENABLE U(0x3)
#define MDCR_SDD_BIT (U(1) << 16)
+#define MDCR_TDOSA_BIT (U(1) << 10)
+#define MDCR_TDA_BIT (U(1) << 9)
+#define MDCR_TPM_BIT (U(1) << 6)
+#define MDCR_EL3_RESET_VAL U(0x0)
+#if !ERROR_DEPRECATED
#define MDCR_DEF_VAL (MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
+#endif
+
+/* MDCR_EL2 definitions */
+#define MDCR_EL2_TDRA_BIT (U(1) << 11)
+#define MDCR_EL2_TDOSA_BIT (U(1) << 10)
+#define MDCR_EL2_TDA_BIT (U(1) << 9)
+#define MDCR_EL2_TDE_BIT (U(1) << 8)
+#define MDCR_EL2_HPME_BIT (U(1) << 7)
+#define MDCR_EL2_TPM_BIT (U(1) << 6)
+#define MDCR_EL2_TPMCR_BIT (U(1) << 5)
+#define MDCR_EL2_RESET_VAL U(0x0)
+
+/* HSTR_EL2 definitions */
+#define HSTR_EL2_RESET_VAL U(0x0)
+#define HSTR_EL2_T_MASK U(0xff)
+
+/* CNTHP_CTL_EL2 definitions */
+#define CNTHP_CTL_ENABLE_BIT (U(1) << 0)
+#define CNTHP_CTL_RESET_VAL U(0x0)
+
+/* VTTBR_EL2 definitions */
+#define VTTBR_RESET_VAL ULL(0x0)
+#define VTTBR_VMID_MASK ULL(0xff)
+#define VTTBR_VMID_SHIFT U(48)
+#define VTTBR_BADDR_MASK ULL(0xffffffffffff)
+#define VTTBR_BADDR_SHIFT U(0)
/* HCR definitions */
#define HCR_RW_SHIFT U(31)
#define ISR_F_SHIFT U(6)
/* CNTHCTL_EL2 definitions */
+#define CNTHCTL_RESET_VAL U(0x0)
#define EVNTEN_BIT (U(1) << 2)
#define EL1PCEN_BIT (U(1) << 1)
#define EL1PCTEN_BIT (U(1) << 0)
#define TCPAC_BIT (U(1) << 31)
#define TTA_BIT (U(1) << 20)
#define TFP_BIT (U(1) << 10)
+#define CPTR_EL3_RESET_VAL U(0x0)
+
+/* CPTR_EL2 definitions */
+#define CPTR_EL2_RES1 ((U(1) << 13) | (U(1) << 12) | (U(0x3ff)))
+#define CPTR_EL2_TCPAC_BIT (U(1) << 31)
+#define CPTR_EL2_TTA_BIT (U(1) << 20)
+#define CPTR_EL2_TFP_BIT (U(1) << 10)
+#define CPTR_EL2_RESET_VAL CPTR_EL2_RES1
/* CPSR/SPSR definitions */
#define DAIF_FIQ_BIT (U(1) << 0)
if (security_state != SECURE)
scr |= SCR_NS_BIT;
- /*
- * Set up SCTLR for the Non Secure context.
- * EE bit is taken from the entrypoint attributes
- * M, C and I bits must be zero (as required by PSCI specification)
- *
- * The target exception level is based on the spsr mode requested.
- * If execution is requested to hyp mode, HVC is enabled
- * via SCR.HCE.
- *
- * Always compute the SCTLR_EL1 value and save in the cpu_context
- * - the HYP registers are set up by cm_preapre_ns_entry() as they
- * are not part of the stored cpu_context
- *
- * TODO: In debug builds the spsr should be validated and checked
- * against the CPU support, security state, endianness and pc
- */
if (security_state != SECURE) {
- sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
/*
- * In addition to SCTLR_RES1, set the CP15_BEN, nTWI & nTWE
- * bits that architecturally reset to 1.
+ * Set up SCTLR for the Non-secure context.
+ *
+ * SCTLR.EE: Endianness is taken from the entrypoint attributes.
+ *
+ * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
+ * required by PSCI specification)
+ *
+ * Set remaining SCTLR fields to their architecturally defined
+ * values. Some fields reset to an IMPLEMENTATION DEFINED value:
+ *
+ * SCTLR.TE: Set to zero so that exceptions to an Exception
+ * Level executing at PL1 are taken to A32 state.
+ *
+ * SCTLR.V: Set to zero to select the normal exception vectors
+ * with base address held in VBAR.
*/
- sctlr |= SCTLR_RES1 | SCTLR_CP15BEN_BIT |
- SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
+ assert(((ep->spsr >> SPSR_E_SHIFT) & SPSR_E_MASK) ==
+ (EP_GET_EE(ep->h.attr) >> EP_EE_SHIFT));
+
+ sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
+ sctlr |= (SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_V_BIT));
write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
}
+ /*
+ * The target exception level is based on the spsr mode requested. If
+ * execution is requested to hyp mode, HVC is enabled via SCR.HCE.
+ */
if (GET_M32(ep->spsr) == MODE32_hyp)
scr |= SCR_HCE_BIT;
+ /*
+ * Store the initialised values for SCTLR and SCR in the cpu_context.
+ * The Hyp mode registers are not part of the saved context and are
+ * set-up in cm_prepare_el3_exit().
+ */
write_ctx_reg(reg_ctx, CTX_SCR, scr);
write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);
******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
- uint32_t sctlr, scr, hcptr;
+ uint32_t hsctlr, scr;
cpu_context_t *ctx = cm_get_context(security_state);
assert(ctx);
scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
if (scr & SCR_HCE_BIT) {
/* Use SCTLR value to initialize HSCTLR */
- sctlr = read_ctx_reg(get_regs_ctx(ctx),
+ hsctlr = read_ctx_reg(get_regs_ctx(ctx),
CTX_NS_SCTLR);
- sctlr |= HSCTLR_RES1;
+ hsctlr |= HSCTLR_RES1;
/* Temporarily set the NS bit to access HSCTLR */
write_scr(read_scr() | SCR_NS_BIT);
/*
* we can access HSCTLR
*/
isb();
- write_hsctlr(sctlr);
+ write_hsctlr(hsctlr);
isb();
write_scr(read_scr() & ~SCR_NS_BIT);
write_scr(read_scr() | SCR_NS_BIT);
isb();
- /* PL2 present but unused, need to disable safely */
- write_hcr(0);
-
- /* HSCTLR : can be ignored when bypassing */
+ /*
+ * Hyp / PL2 present but unused, need to disable safely.
+ * HSCTLR can be ignored in this case.
+ *
+ * Set HCR to its architectural reset value so that
+ * Non-secure operations do not trap to Hyp mode.
+ */
+ write_hcr(HCR_RESET_VAL);
- /* HCPTR : disable all traps TCPAC, TTA, TCP */
- hcptr = read_hcptr();
- hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT);
- write_hcptr(hcptr);
+ /*
+ * Set HCPTR to its architectural reset value so that
+ * Non-secure access from EL1 or EL0 to trace and to
+ * Advanced SIMD and floating point functionality does
+ * not trap to Hyp mode.
+ */
+ write_hcptr(HCPTR_RESET_VAL);
- /* Enable EL1 access to timer */
- write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT);
+ /*
+ * Initialise CNTHCTL. All fields are architecturally
+ * UNKNOWN on reset and are set to zero except for
+ * field(s) listed below.
+ *
+ * CNTHCTL.PL1PCEN: Disable traps to Hyp mode of
+ * Non-secure EL0 and EL1 accessed to the physical
+ * timer registers.
+ *
+ * CNTHCTL.PL1PCTEN: Disable traps to Hyp mode of
+ * Non-secure EL0 and EL1 accessed to the physical
+ * counter registers.
+ */
+ write_cnthctl(CNTHCTL_RESET_VAL |
+ PL1PCEN_BIT | PL1PCTEN_BIT);
- /* Reset CNTVOFF_EL2 */
+ /*
+ * Initialise CNTVOFF to zero as it resets to an
+ * IMPLEMENTATION DEFINED value.
+ */
write64_cntvoff(0);
- /* Set VPIDR, VMPIDR to match MIDR, MPIDR */
+ /*
+ * Set VPIDR and VMPIDR to match MIDR_EL1 and MPIDR
+ * respectively.
+ */
write_vpidr(read_midr());
write_vmpidr(read_mpidr());
/*
- * Reset VTTBR.
- * Needed because cache maintenance operations depend on
- * the VMID even when non-secure EL1&0 stage 2 address
- * translation are disabled.
+ * Initialise VTTBR, setting all fields rather than
+ * relying on the hw. Some fields are architecturally
+ * UNKNOWN at reset.
+ *
+ * VTTBR.VMID: Set to zero which is the architecturally
+ * defined reset value. Even though EL1&0 stage 2
+ * address translation is disabled, cache maintenance
+ * operations depend on the VMID.
+ *
+ * VTTBR.BADDR: Set to zero as EL1&0 stage 2 address
+ * translation is disabled.
*/
- write64_vttbr(0);
+ write64_vttbr(VTTBR_RESET_VAL &
+ ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
+ | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
/*
- * Avoid unexpected debug traps in case where HDCR
- * is not completely reset by the hardware - set
- * HDCR.HPMN to PMCR.N and zero the remaining bits.
- * The HDCR.HPMN and PMCR.N fields are the same size
- * (5 bits) and HPMN is at offset zero within HDCR.
+ * Initialise HDCR, setting all the fields rather than
+ * relying on hw.
+ *
+ * HDCR.HPMN: Set to value of PMCR.N which is the
+ * architecturally-defined reset value.
*/
- write_hdcr((read_pmcr() & PMCR_N_BITS) >> PMCR_N_SHIFT);
+ write_hdcr(HDCR_RESET_VAL |
+ ((read_pmcr() & PMCR_N_BITS) >> PMCR_N_SHIFT));
/*
- * Reset CNTHP_CTL to disable the EL2 physical timer and
- * therefore prevent timer interrupts.
+ * Set HSTR to its architectural reset value so that
+ * access to system registers in the cproc=1111
+ * encoding space do not trap to Hyp mode.
+ */
+ write_hstr(HSTR_RESET_VAL);
+ /*
+ * Set CNTHP_CTL to its architectural reset value to
+ * disable the EL2 physical timer and prevent timer
+ * interrupts. Some fields are architecturally UNKNOWN
+ * on reset and are set to zero.
*/
- write_cnthp_ctl(0);
+ write_cnthp_ctl(CNTHP_CTL_RESET_VAL);
isb();
write_scr(read_scr() & ~SCR_NS_BIT);
zeromem(ctx, sizeof(*ctx));
/*
- * Base the context SCR on the current value, adjust for entry point
- * specific requirements and set trap bits from the IMF
- * TODO: provide the base/global SCR bits using another mechanism?
+ * SCR_EL3 was initialised during reset sequence in macro
+ * el3_arch_init_common. This code modifies the SCR_EL3 fields that
+ * affect the next EL.
+ *
+ * The following fields are initially set to zero and then updated to
+ * the required value depending on the state of the SPSR_EL3 and the
+ * Security state and entrypoint attributes of the next EL.
*/
scr_el3 = read_scr();
scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
SCR_ST_BIT | SCR_HCE_BIT);
-
+ /*
+ * SCR_NS: Set the security state of the next EL.
+ */
if (security_state != SECURE)
scr_el3 |= SCR_NS_BIT;
-
+ /*
+ * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
+ * Exception level as specified by SPSR.
+ */
if (GET_RW(ep->spsr) == MODE_RW_64)
scr_el3 |= SCR_RW_BIT;
-
+ /*
+ * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
+ * Secure timer registers to EL3, from AArch64 state only, if specified
+ * by the entrypoint attributes.
+ */
if (EP_GET_ST(ep->h.attr))
scr_el3 |= SCR_ST_BIT;
#ifndef HANDLE_EA_EL3_FIRST
- /* Explicitly stop to trap aborts from lower exception levels. */
+ /*
+ * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
+ * to EL3 when executing at a lower EL. When executing at EL3, External
+ * Aborts are taken to EL3.
+ */
scr_el3 &= ~SCR_EA_BIT;
#endif
#ifdef IMAGE_BL31
/*
- * IRQ/FIQ bits only need setting if interrupt routing
- * model has been set up for BL31.
+ * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
+ * indicated by the interrupt routing model for BL31.
*/
scr_el3 |= get_scr_el3_from_routing_model(security_state);
#endif
/*
- * Set up SCTLR_ELx for the target exception level:
- * EE bit is taken from the entrypoint attributes
- * M, C and I bits must be zero (as required by PSCI specification)
- *
- * The target exception level is based on the spsr mode requested.
- * If execution is requested to EL2 or hyp mode, HVC is enabled
- * via SCR_EL3.HCE.
+ * SCR_EL3.HCE: Enable HVC instructions if next execution state is
+ * AArch64 and next EL is EL2, or if next execution state is AArch32 and
+ * next mode is Hyp.
+ */
+ if ((GET_RW(ep->spsr) == MODE_RW_64
+ && GET_EL(ep->spsr) == MODE_EL2)
+ || (GET_RW(ep->spsr) != MODE_RW_64
+ && GET_M32(ep->spsr) == MODE32_hyp)) {
+ scr_el3 |= SCR_HCE_BIT;
+ }
+
+ /*
+ * Initialise SCTLR_EL1 to the reset value corresponding to the target
+ * execution state setting all fields rather than relying of the hw.
+ * Some fields have architecturally UNKNOWN reset values and these are
+ * set to zero.
*
- * Always compute the SCTLR_EL1 value and save in the cpu_context
- * - the EL2 registers are set up by cm_preapre_ns_entry() as they
- * are not part of the stored cpu_context
+ * SCTLR.EE: Endianness is taken from the entrypoint attributes.
*
- * TODO: In debug builds the spsr should be validated and checked
- * against the CPU support, security state, endianess and pc
+ * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
+ * required by PSCI specification)
*/
sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
if (GET_RW(ep->spsr) == MODE_RW_64)
sctlr_elx |= SCTLR_EL1_RES1;
else {
- sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
/*
- * If lower non-secure EL is AArch32, enable the CP15BEN, nTWI
- * & nTWI bits. This aligns with SCTLR initialization on
- * systems with an AArch32 EL3, where these bits
- * architecturally reset to 1.
+ * If the target execution state is AArch32 then the following
+ * fields need to be set.
+ *
+ * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
+ * instructions are not trapped to EL1.
+ *
+ * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
+ * instructions are not trapped to EL1.
+ *
+ * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
+ * CP15DMB, CP15DSB, and CP15ISB instructions.
*/
- if (security_state != SECURE)
- sctlr_elx |= SCTLR_CP15BEN_BIT | SCTLR_NTWI_BIT
- | SCTLR_NTWE_BIT;
+ sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
+ | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
}
+ /*
+ * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
+ * and other EL2 resgisters are set up by cm_preapre_ns_entry() as they
+ * are not part of the stored cpu_context.
+ */
write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
- if ((GET_RW(ep->spsr) == MODE_RW_64
- && GET_EL(ep->spsr) == MODE_EL2)
- || (GET_RW(ep->spsr) != MODE_RW_64
- && GET_M32(ep->spsr) == MODE32_hyp)) {
- scr_el3 |= SCR_HCE_BIT;
- }
-
/* Populate EL3 state so that we've the right context before doing ERET */
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
- uint32_t sctlr_elx, scr_el3, cptr_el2;
+ uint32_t sctlr_elx, scr_el3;
cpu_context_t *ctx = cm_get_context(security_state);
assert(ctx);
sctlr_elx |= SCTLR_EL2_RES1;
write_sctlr_el2(sctlr_elx);
} else if (EL_IMPLEMENTED(2)) {
- /* EL2 present but unused, need to disable safely */
-
- /* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
+ /*
+ * EL2 present but unused, need to disable safely.
+ * SCTLR_EL2 can be ignored in this case.
+ *
+ * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
+ * to zero so that Non-secure operations do not trap to
+ * EL2.
+ *
+ * HCR_EL2.RW: Set this field to match SCR_EL3.RW
+ */
write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
- /* SCTLR_EL2 : can be ignored when bypassing */
-
- /* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
- cptr_el2 = read_cptr_el2();
- cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
- write_cptr_el2(cptr_el2);
+ /*
+ * Initialise CPTR_EL2 setting all fields rather than
+ * relying on the hw. All fields have architecturally
+ * UNKNOWN reset values.
+ *
+ * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
+ * accesses to the CPACR_EL1 or CPACR from both
+ * Execution states do not trap to EL2.
+ *
+ * CPTR_EL2.TTA: Set to zero so that Non-secure System
+ * register accesses to the trace registers from both
+ * Execution states do not trap to EL2.
+ *
+ * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
+ * to SIMD and floating-point functionality from both
+ * Execution states do not trap to EL2.
+ */
+ write_cptr_el2(CPTR_EL2_RESET_VAL &
+ ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
+ | CPTR_EL2_TFP_BIT));
- /* Enable EL1 access to timer */
- write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);
+ /*
+ * Initiliase CNTHCTL_EL2. All fields are
+ * architecturally UNKNOWN on reset and are set to zero
+ * except for field(s) listed below.
+ *
+ * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
+ * Hyp mode of Non-secure EL0 and EL1 accesses to the
+ * physical timer registers.
+ *
+ * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
+ * Hyp mode of Non-secure EL0 and EL1 accesses to the
+ * physical counter registers.
+ */
+ write_cnthctl_el2(CNTHCTL_RESET_VAL |
+ EL1PCEN_BIT | EL1PCTEN_BIT);
- /* Reset CNTVOFF_EL2 */
+ /*
+ * Initialise CNTVOFF_EL2 to zero as it resets to an
+ * architecturally UNKNOWN value.
+ */
write_cntvoff_el2(0);
- /* Set VPIDR, VMPIDR to match MIDR, MPIDR */
+ /*
+ * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
+ * MPIDR_EL1 respectively.
+ */
write_vpidr_el2(read_midr_el1());
write_vmpidr_el2(read_mpidr_el1());
/*
- * Reset VTTBR_EL2.
- * Needed because cache maintenance operations depend on
- * the VMID even when non-secure EL1&0 stage 2 address
- * translation are disabled.
+ * Initialise VTTBR_EL2. All fields are architecturally
+ * UNKNOWN on reset.
+ *
+ * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
+ * 2 address translation is disabled, cache maintenance
+ * operations depend on the VMID.
+ *
+ * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
+ * translation is disabled.
*/
- write_vttbr_el2(0);
+ write_vttbr_el2(VTTBR_RESET_VAL &
+ ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
+ | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
+
/*
- * Avoid unexpected debug traps in case where MDCR_EL2
- * is not completely reset by the hardware - set
- * MDCR_EL2.HPMN to PMCR_EL0.N and zero the remaining
- * bits.
- * MDCR_EL2.HPMN and PMCR_EL0.N fields are the same size
- * (5 bits) and HPMN is at offset zero within MDCR_EL2.
+ * Initialise MDCR_EL2, setting all fields rather than
+ * relying on hw. Some fields are architecturally
+ * UNKNOWN on reset.
+ *
+ * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
+ * EL1 System register accesses to the Debug ROM
+ * registers are not trapped to EL2.
+ *
+ * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
+ * System register accesses to the powerdown debug
+ * registers are not trapped to EL2.
+ *
+ * MDCR_EL2.TDA: Set to zero so that System register
+ * accesses to the debug registers do not trap to EL2.
+ *
+ * MDCR_EL2.TDE: Set to zero so that debug exceptions
+ * are not routed to EL2.
+ *
+ * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
+ * Monitors.
+ *
+ * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
+ * EL1 accesses to all Performance Monitors registers
+ * are not trapped to EL2.
+ *
+ * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
+ * and EL1 accesses to the PMCR_EL0 or PMCR are not
+ * trapped to EL2.
+ *
+ * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
+ * architecturally-defined reset value.
*/
- write_mdcr_el2((read_pmcr_el0() & PMCR_EL0_N_BITS)
- >> PMCR_EL0_N_SHIFT);
+ write_mdcr_el2((MDCR_EL2_RESET_VAL |
+ ((read_pmcr_el0() & PMCR_EL0_N_BITS)
+ >> PMCR_EL0_N_SHIFT)) &
+ ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
+ | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
+ | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
+ | MDCR_EL2_TPMCR_BIT));
/*
- * Avoid unexpected traps of non-secure access to
- * certain system registers at EL1 or lower where
- * HSTR_EL2 is not completely reset to zero by the
- * hardware - zero the entire register.
+ * Initialise HSTR_EL2. All fields are architecturally
+ * UNKNOWN on reset.
+ *
+ * HSTR_EL2.T<n>: Set all these fields to zero so that
+ * Non-secure EL0 or EL1 accesses to System registers
+ * do not trap to EL2.
*/
- write_hstr_el2(0);
+ write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
/*
- * Reset CNTHP_CTL_EL2 to disable the EL2 physical timer
- * and therefore prevent timer interrupts.
+ * Initialise CNTHP_CTL_EL2. All fields are
+ * architecturally UNKNOWN on reset.
+ *
+ * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
+ * physical timer and prevent timer interrupts.
*/
- write_cnthp_ctl_el2(0);
+ write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
+ ~(CNTHP_CTL_ENABLE_BIT));
}
}