docs: power: convert docs to ReST and rename to *.rst
authorMauro Carvalho Chehab <mchehab+samsung@kernel.org>
Thu, 13 Jun 2019 10:10:36 +0000 (07:10 -0300)
committerBjorn Helgaas <bhelgaas@google.com>
Fri, 14 Jun 2019 21:08:36 +0000 (16:08 -0500)
Convert the PM documents to ReST, in order to allow them to
build with Sphinx.

The conversion is actually:
  - add blank lines and indentation in order to identify paragraphs;
  - fix tables markups;
  - add some lists markups;
  - mark literal blocks;
  - adjust title markups.

At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.

Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Mark Brown <broonie@kernel.org>
Acked-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
74 files changed:
Documentation/ABI/testing/sysfs-class-powercap
Documentation/admin-guide/kernel-parameters.txt
Documentation/cpu-freq/core.txt
Documentation/driver-api/pm/devices.rst
Documentation/driver-api/usb/power-management.rst
Documentation/power/apm-acpi.rst [new file with mode: 0644]
Documentation/power/apm-acpi.txt [deleted file]
Documentation/power/basic-pm-debugging.rst [new file with mode: 0644]
Documentation/power/basic-pm-debugging.txt [deleted file]
Documentation/power/charger-manager.rst [new file with mode: 0644]
Documentation/power/charger-manager.txt [deleted file]
Documentation/power/drivers-testing.rst [new file with mode: 0644]
Documentation/power/drivers-testing.txt [deleted file]
Documentation/power/energy-model.rst [new file with mode: 0644]
Documentation/power/energy-model.txt [deleted file]
Documentation/power/freezing-of-tasks.rst [new file with mode: 0644]
Documentation/power/freezing-of-tasks.txt [deleted file]
Documentation/power/index.rst [new file with mode: 0644]
Documentation/power/interface.rst [new file with mode: 0644]
Documentation/power/interface.txt [deleted file]
Documentation/power/opp.rst [new file with mode: 0644]
Documentation/power/opp.txt [deleted file]
Documentation/power/pci.rst [new file with mode: 0644]
Documentation/power/pci.txt [deleted file]
Documentation/power/pm_qos_interface.rst [new file with mode: 0644]
Documentation/power/pm_qos_interface.txt [deleted file]
Documentation/power/power_supply_class.rst [new file with mode: 0644]
Documentation/power/power_supply_class.txt [deleted file]
Documentation/power/powercap/powercap.rst [new file with mode: 0644]
Documentation/power/powercap/powercap.txt [deleted file]
Documentation/power/regulator/consumer.rst [new file with mode: 0644]
Documentation/power/regulator/consumer.txt [deleted file]
Documentation/power/regulator/design.rst [new file with mode: 0644]
Documentation/power/regulator/design.txt [deleted file]
Documentation/power/regulator/machine.rst [new file with mode: 0644]
Documentation/power/regulator/machine.txt [deleted file]
Documentation/power/regulator/overview.rst [new file with mode: 0644]
Documentation/power/regulator/overview.txt [deleted file]
Documentation/power/regulator/regulator.rst [new file with mode: 0644]
Documentation/power/regulator/regulator.txt [deleted file]
Documentation/power/runtime_pm.rst [new file with mode: 0644]
Documentation/power/runtime_pm.txt [deleted file]
Documentation/power/s2ram.rst [new file with mode: 0644]
Documentation/power/s2ram.txt [deleted file]
Documentation/power/suspend-and-cpuhotplug.rst [new file with mode: 0644]
Documentation/power/suspend-and-cpuhotplug.txt [deleted file]
Documentation/power/suspend-and-interrupts.rst [new file with mode: 0644]
Documentation/power/suspend-and-interrupts.txt [deleted file]
Documentation/power/swsusp-and-swap-files.rst [new file with mode: 0644]
Documentation/power/swsusp-and-swap-files.txt [deleted file]
Documentation/power/swsusp-dmcrypt.rst [new file with mode: 0644]
Documentation/power/swsusp-dmcrypt.txt [deleted file]
Documentation/power/swsusp.rst [new file with mode: 0644]
Documentation/power/swsusp.txt [deleted file]
Documentation/power/tricks.rst [new file with mode: 0644]
Documentation/power/tricks.txt [deleted file]
Documentation/power/userland-swsusp.rst [new file with mode: 0644]
Documentation/power/userland-swsusp.txt [deleted file]
Documentation/power/video.rst [new file with mode: 0644]
Documentation/power/video.txt [deleted file]
Documentation/process/submitting-drivers.rst
Documentation/scheduler/sched-energy.txt
Documentation/trace/coresight-cpu-debug.txt
Documentation/translations/zh_CN/process/submitting-drivers.rst
MAINTAINERS
arch/x86/Kconfig
drivers/gpu/drm/i915/i915_drv.h
drivers/opp/Kconfig
drivers/power/supply/power_supply_core.c
include/linux/interrupt.h
include/linux/pci.h
include/linux/pm.h
kernel/power/Kconfig
net/wireless/Kconfig

index db3b3ff70d848c555575f34849031035a0314c51..742dfd9665926aec1adfab855c0e77d06ebeb4fc 100644 (file)
@@ -5,7 +5,7 @@ Contact:        linux-pm@vger.kernel.org
 Description:
                The powercap/ class sub directory belongs to the power cap
                subsystem. Refer to
-               Documentation/power/powercap/powercap.txt for details.
+               Documentation/power/powercap/powercap.rst for details.
 
 What:          /sys/class/powercap/<control type>
 Date:          September 2013
index 138f6664b2e29fe4ca71225fde00ac2ea695a941..7f5ca6e7c4d340dfde2f08a8747a8feacdda931b 100644 (file)
@@ -13,7 +13,7 @@
                        For ARM64, ONLY "acpi=off", "acpi=on" or "acpi=force"
                        are available
 
-                       See also Documentation/power/runtime_pm.txt, pci=noacpi
+                       See also Documentation/power/runtime_pm.rst, pci=noacpi
 
        acpi_apic_instance=     [ACPI, IOAPIC]
                        Format: <int>
        acpi_sleep=     [HW,ACPI] Sleep options
                        Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig,
                                  old_ordering, nonvs, sci_force_enable, nobl }
-                       See Documentation/power/video.txt for information on
+                       See Documentation/power/video.rst for information on
                        s3_bios and s3_mode.
                        s3_beep is for debugging; it makes the PC's speaker beep
                        as soon as the kernel's real-mode entry point is called.
                        Specify the offset from the beginning of the partition
                        given by "resume=" at which the swap header is located,
                        in <PAGE_SIZE> units (needed only for swap files).
-                       See  Documentation/power/swsusp-and-swap-files.txt
+                       See  Documentation/power/swsusp-and-swap-files.rst
 
        resumedelay=    [HIBERNATION] Delay (in seconds) to pause before attempting to
                        read the resume files
index 073f128af5a741c531eddcf77c65d2f76af71f6c..55193e680250933ef9d16ea3fa6d75a464e74528 100644 (file)
@@ -95,7 +95,7 @@ flags - flags of the cpufreq driver
 
 3. CPUFreq Table Generation with Operating Performance Point (OPP)
 ==================================================================
-For details about OPP, see Documentation/power/opp.txt
+For details about OPP, see Documentation/power/opp.rst
 
 dev_pm_opp_init_cpufreq_table -
        This function provides a ready to use conversion routine to translate
index 30835683616a68b008eaa49968329d60fe368fe0..f66c7b9126ea5f824f27765022f8dd6a48939e05 100644 (file)
@@ -225,7 +225,7 @@ system-wide transition to a sleep state even though its :c:member:`runtime_auto`
 flag is clear.
 
 For more information about the runtime power management framework, refer to
-:file:`Documentation/power/runtime_pm.txt`.
+:file:`Documentation/power/runtime_pm.rst`.
 
 
 Calling Drivers to Enter and Leave System Sleep States
@@ -728,7 +728,7 @@ it into account in any way.
 
 Devices may be defined as IRQ-safe which indicates to the PM core that their
 runtime PM callbacks may be invoked with disabled interrupts (see
-:file:`Documentation/power/runtime_pm.txt` for more information).  If an
+:file:`Documentation/power/runtime_pm.rst` for more information).  If an
 IRQ-safe device belongs to a PM domain, the runtime PM of the domain will be
 disallowed, unless the domain itself is defined as IRQ-safe. However, it
 makes sense to define a PM domain as IRQ-safe only if all the devices in it
@@ -795,7 +795,7 @@ so on) and the final state of the device must reflect the "active" runtime PM
 status in that case.
 
 During system-wide resume from a sleep state it's easiest to put devices into
-the full-power state, as explained in :file:`Documentation/power/runtime_pm.txt`.
+the full-power state, as explained in :file:`Documentation/power/runtime_pm.rst`.
 [Refer to that document for more information regarding this particular issue as
 well as for information on the device runtime power management framework in
 general.]
index 4a74cf6f2797274b96510685a44f4066fac558d3..2525c3622cae9db88eea2561361ead0863010807 100644 (file)
@@ -46,7 +46,7 @@ device is turned off while the system as a whole remains running, we
 call it a "dynamic suspend" (also known as a "runtime suspend" or
 "selective suspend").  This document concentrates mostly on how
 dynamic PM is implemented in the USB subsystem, although system PM is
-covered to some extent (see ``Documentation/power/*.txt`` for more
+covered to some extent (see ``Documentation/power/*.rst`` for more
 information about system PM).
 
 System PM support is present only if the kernel was built with
diff --git a/Documentation/power/apm-acpi.rst b/Documentation/power/apm-acpi.rst
new file mode 100644 (file)
index 0000000..5b90d94
--- /dev/null
@@ -0,0 +1,36 @@
+============
+APM or ACPI?
+============
+
+If you have a relatively recent x86 mobile, desktop, or server system,
+odds are it supports either Advanced Power Management (APM) or
+Advanced Configuration and Power Interface (ACPI).  ACPI is the newer
+of the two technologies and puts power management in the hands of the
+operating system, allowing for more intelligent power management than
+is possible with BIOS controlled APM.
+
+The best way to determine which, if either, your system supports is to
+build a kernel with both ACPI and APM enabled (as of 2.3.x ACPI is
+enabled by default).  If a working ACPI implementation is found, the
+ACPI driver will override and disable APM, otherwise the APM driver
+will be used.
+
+No, sorry, you cannot have both ACPI and APM enabled and running at
+once.  Some people with broken ACPI or broken APM implementations
+would like to use both to get a full set of working features, but you
+simply cannot mix and match the two.  Only one power management
+interface can be in control of the machine at once.  Think about it..
+
+User-space Daemons
+------------------
+Both APM and ACPI rely on user-space daemons, apmd and acpid
+respectively, to be completely functional.  Obtain both of these
+daemons from your Linux distribution or from the Internet (see below)
+and be sure that they are started sometime in the system boot process.
+Go ahead and start both.  If ACPI or APM is not available on your
+system the associated daemon will exit gracefully.
+
+  =====  =======================================
+  apmd   http://ftp.debian.org/pool/main/a/apmd/
+  acpid  http://acpid.sf.net/
+  =====  =======================================
diff --git a/Documentation/power/apm-acpi.txt b/Documentation/power/apm-acpi.txt
deleted file mode 100644 (file)
index 6cc423d..0000000
+++ /dev/null
@@ -1,32 +0,0 @@
-APM or ACPI?
-------------
-If you have a relatively recent x86 mobile, desktop, or server system,
-odds are it supports either Advanced Power Management (APM) or
-Advanced Configuration and Power Interface (ACPI).  ACPI is the newer
-of the two technologies and puts power management in the hands of the
-operating system, allowing for more intelligent power management than
-is possible with BIOS controlled APM.
-
-The best way to determine which, if either, your system supports is to
-build a kernel with both ACPI and APM enabled (as of 2.3.x ACPI is
-enabled by default).  If a working ACPI implementation is found, the
-ACPI driver will override and disable APM, otherwise the APM driver
-will be used.
-
-No, sorry, you cannot have both ACPI and APM enabled and running at
-once.  Some people with broken ACPI or broken APM implementations
-would like to use both to get a full set of working features, but you
-simply cannot mix and match the two.  Only one power management
-interface can be in control of the machine at once.  Think about it..
-
-User-space Daemons
-------------------
-Both APM and ACPI rely on user-space daemons, apmd and acpid
-respectively, to be completely functional.  Obtain both of these
-daemons from your Linux distribution or from the Internet (see below)
-and be sure that they are started sometime in the system boot process.
-Go ahead and start both.  If ACPI or APM is not available on your
-system the associated daemon will exit gracefully.
-
-  apmd:   http://ftp.debian.org/pool/main/a/apmd/
-  acpid:  http://acpid.sf.net/
diff --git a/Documentation/power/basic-pm-debugging.rst b/Documentation/power/basic-pm-debugging.rst
new file mode 100644 (file)
index 0000000..69862e7
--- /dev/null
@@ -0,0 +1,269 @@
+=================================
+Debugging hibernation and suspend
+=================================
+
+       (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
+
+1. Testing hibernation (aka suspend to disk or STD)
+===================================================
+
+To check if hibernation works, you can try to hibernate in the "reboot" mode::
+
+       # echo reboot > /sys/power/disk
+       # echo disk > /sys/power/state
+
+and the system should create a hibernation image, reboot, resume and get back to
+the command prompt where you have started the transition.  If that happens,
+hibernation is most likely to work correctly.  Still, you need to repeat the
+test at least a couple of times in a row for confidence.  [This is necessary,
+because some problems only show up on a second attempt at suspending and
+resuming the system.]  Moreover, hibernating in the "reboot" and "shutdown"
+modes causes the PM core to skip some platform-related callbacks which on ACPI
+systems might be necessary to make hibernation work.  Thus, if your machine
+fails to hibernate or resume in the "reboot" mode, you should try the
+"platform" mode::
+
+       # echo platform > /sys/power/disk
+       # echo disk > /sys/power/state
+
+which is the default and recommended mode of hibernation.
+
+Unfortunately, the "platform" mode of hibernation does not work on some systems
+with broken BIOSes.  In such cases the "shutdown" mode of hibernation might
+work::
+
+       # echo shutdown > /sys/power/disk
+       # echo disk > /sys/power/state
+
+(it is similar to the "reboot" mode, but it requires you to press the power
+button to make the system resume).
+
+If neither "platform" nor "shutdown" hibernation mode works, you will need to
+identify what goes wrong.
+
+a) Test modes of hibernation
+----------------------------
+
+To find out why hibernation fails on your system, you can use a special testing
+facility available if the kernel is compiled with CONFIG_PM_DEBUG set.  Then,
+there is the file /sys/power/pm_test that can be used to make the hibernation
+core run in a test mode.  There are 5 test modes available:
+
+freezer
+       - test the freezing of processes
+
+devices
+       - test the freezing of processes and suspending of devices
+
+platform
+       - test the freezing of processes, suspending of devices and platform
+         global control methods [1]_
+
+processors
+       - test the freezing of processes, suspending of devices, platform
+         global control methods [1]_ and the disabling of nonboot CPUs
+
+core
+       - test the freezing of processes, suspending of devices, platform global
+         control methods\ [1]_, the disabling of nonboot CPUs and suspending
+         of platform/system devices
+
+.. [1]
+
+    the platform global control methods are only available on ACPI systems
+    and are only tested if the hibernation mode is set to "platform"
+
+To use one of them it is necessary to write the corresponding string to
+/sys/power/pm_test (eg. "devices" to test the freezing of processes and
+suspending devices) and issue the standard hibernation commands.  For example,
+to use the "devices" test mode along with the "platform" mode of hibernation,
+you should do the following::
+
+       # echo devices > /sys/power/pm_test
+       # echo platform > /sys/power/disk
+       # echo disk > /sys/power/state
+
+Then, the kernel will try to freeze processes, suspend devices, wait a few
+seconds (5 by default, but configurable by the suspend.pm_test_delay module
+parameter), resume devices and thaw processes.  If "platform" is written to
+/sys/power/pm_test , then after suspending devices the kernel will additionally
+invoke the global control methods (eg. ACPI global control methods) used to
+prepare the platform firmware for hibernation.  Next, it will wait a
+configurable number of seconds and invoke the platform (eg. ACPI) global
+methods used to cancel hibernation etc.
+
+Writing "none" to /sys/power/pm_test causes the kernel to switch to the normal
+hibernation/suspend operations.  Also, when open for reading, /sys/power/pm_test
+contains a space-separated list of all available tests (including "none" that
+represents the normal functionality) in which the current test level is
+indicated by square brackets.
+
+Generally, as you can see, each test level is more "invasive" than the previous
+one and the "core" level tests the hardware and drivers as deeply as possible
+without creating a hibernation image.  Obviously, if the "devices" test fails,
+the "platform" test will fail as well and so on.  Thus, as a rule of thumb, you
+should try the test modes starting from "freezer", through "devices", "platform"
+and "processors" up to "core" (repeat the test on each level a couple of times
+to make sure that any random factors are avoided).
+
+If the "freezer" test fails, there is a task that cannot be frozen (in that case
+it usually is possible to identify the offending task by analysing the output of
+dmesg obtained after the failing test).  Failure at this level usually means
+that there is a problem with the tasks freezer subsystem that should be
+reported.
+
+If the "devices" test fails, most likely there is a driver that cannot suspend
+or resume its device (in the latter case the system may hang or become unstable
+after the test, so please take that into consideration).  To find this driver,
+you can carry out a binary search according to the rules:
+
+- if the test fails, unload a half of the drivers currently loaded and repeat
+  (that would probably involve rebooting the system, so always note what drivers
+  have been loaded before the test),
+- if the test succeeds, load a half of the drivers you have unloaded most
+  recently and repeat.
+
+Once you have found the failing driver (there can be more than just one of
+them), you have to unload it every time before hibernation.  In that case please
+make sure to report the problem with the driver.
+
+It is also possible that the "devices" test will still fail after you have
+unloaded all modules. In that case, you may want to look in your kernel
+configuration for the drivers that can be compiled as modules (and test again
+with these drivers compiled as modules).  You may also try to use some special
+kernel command line options such as "noapic", "noacpi" or even "acpi=off".
+
+If the "platform" test fails, there is a problem with the handling of the
+platform (eg. ACPI) firmware on your system.  In that case the "platform" mode
+of hibernation is not likely to work.  You can try the "shutdown" mode, but that
+is rather a poor man's workaround.
+
+If the "processors" test fails, the disabling/enabling of nonboot CPUs does not
+work (of course, this only may be an issue on SMP systems) and the problem
+should be reported.  In that case you can also try to switch the nonboot CPUs
+off and on using the /sys/devices/system/cpu/cpu*/online sysfs attributes and
+see if that works.
+
+If the "core" test fails, which means that suspending of the system/platform
+devices has failed (these devices are suspended on one CPU with interrupts off),
+the problem is most probably hardware-related and serious, so it should be
+reported.
+
+A failure of any of the "platform", "processors" or "core" tests may cause your
+system to hang or become unstable, so please beware.  Such a failure usually
+indicates a serious problem that very well may be related to the hardware, but
+please report it anyway.
+
+b) Testing minimal configuration
+--------------------------------
+
+If all of the hibernation test modes work, you can boot the system with the
+"init=/bin/bash" command line parameter and attempt to hibernate in the
+"reboot", "shutdown" and "platform" modes.  If that does not work, there
+probably is a problem with a driver statically compiled into the kernel and you
+can try to compile more drivers as modules, so that they can be tested
+individually.  Otherwise, there is a problem with a modular driver and you can
+find it by loading a half of the modules you normally use and binary searching
+in accordance with the algorithm:
+- if there are n modules loaded and the attempt to suspend and resume fails,
+unload n/2 of the modules and try again (that would probably involve rebooting
+the system),
+- if there are n modules loaded and the attempt to suspend and resume succeeds,
+load n/2 modules more and try again.
+
+Again, if you find the offending module(s), it(they) must be unloaded every time
+before hibernation, and please report the problem with it(them).
+
+c) Using the "test_resume" hibernation option
+---------------------------------------------
+
+/sys/power/disk generally tells the kernel what to do after creating a
+hibernation image.  One of the available options is "test_resume" which
+causes the just created image to be used for immediate restoration.  Namely,
+after doing::
+
+       # echo test_resume > /sys/power/disk
+       # echo disk > /sys/power/state
+
+a hibernation image will be created and a resume from it will be triggered
+immediately without involving the platform firmware in any way.
+
+That test can be used to check if failures to resume from hibernation are
+related to bad interactions with the platform firmware.  That is, if the above
+works every time, but resume from actual hibernation does not work or is
+unreliable, the platform firmware may be responsible for the failures.
+
+On architectures and platforms that support using different kernels to restore
+hibernation images (that is, the kernel used to read the image from storage and
+load it into memory is different from the one included in the image) or support
+kernel address space randomization, it also can be used to check if failures
+to resume may be related to the differences between the restore and image
+kernels.
+
+d) Advanced debugging
+---------------------
+
+In case that hibernation does not work on your system even in the minimal
+configuration and compiling more drivers as modules is not practical or some
+modules cannot be unloaded, you can use one of the more advanced debugging
+techniques to find the problem.  First, if there is a serial port in your box,
+you can boot the kernel with the 'no_console_suspend' parameter and try to log
+kernel messages using the serial console.  This may provide you with some
+information about the reasons of the suspend (resume) failure.  Alternatively,
+it may be possible to use a FireWire port for debugging with firescope
+(http://v3.sk/~lkundrak/firescope/).  On x86 it is also possible to
+use the PM_TRACE mechanism documented in Documentation/power/s2ram.rst .
+
+2. Testing suspend to RAM (STR)
+===============================
+
+To verify that the STR works, it is generally more convenient to use the s2ram
+tool available from http://suspend.sf.net and documented at
+http://en.opensuse.org/SDB:Suspend_to_RAM (S2RAM_LINK).
+
+Namely, after writing "freezer", "devices", "platform", "processors", or "core"
+into /sys/power/pm_test (available if the kernel is compiled with
+CONFIG_PM_DEBUG set) the suspend code will work in the test mode corresponding
+to given string.  The STR test modes are defined in the same way as for
+hibernation, so please refer to Section 1 for more information about them.  In
+particular, the "core" test allows you to test everything except for the actual
+invocation of the platform firmware in order to put the system into the sleep
+state.
+
+Among other things, the testing with the help of /sys/power/pm_test may allow
+you to identify drivers that fail to suspend or resume their devices.  They
+should be unloaded every time before an STR transition.
+
+Next, you can follow the instructions at S2RAM_LINK to test the system, but if
+it does not work "out of the box", you may need to boot it with
+"init=/bin/bash" and test s2ram in the minimal configuration.  In that case,
+you may be able to search for failing drivers by following the procedure
+analogous to the one described in section 1.  If you find some failing drivers,
+you will have to unload them every time before an STR transition (ie. before
+you run s2ram), and please report the problems with them.
+
+There is a debugfs entry which shows the suspend to RAM statistics. Here is an
+example of its output::
+
+       # mount -t debugfs none /sys/kernel/debug
+       # cat /sys/kernel/debug/suspend_stats
+       success: 20
+       fail: 5
+       failed_freeze: 0
+       failed_prepare: 0
+       failed_suspend: 5
+       failed_suspend_noirq: 0
+       failed_resume: 0
+       failed_resume_noirq: 0
+       failures:
+         last_failed_dev:      alarm
+                               adc
+         last_failed_errno:    -16
+                               -16
+         last_failed_step:     suspend
+                               suspend
+
+Field success means the success number of suspend to RAM, and field fail means
+the failure number. Others are the failure number of different steps of suspend
+to RAM. suspend_stats just lists the last 2 failed devices, error number and
+failed step of suspend.
diff --git a/Documentation/power/basic-pm-debugging.txt b/Documentation/power/basic-pm-debugging.txt
deleted file mode 100644 (file)
index 708f87f..0000000
+++ /dev/null
@@ -1,254 +0,0 @@
-Debugging hibernation and suspend
-       (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
-
-1. Testing hibernation (aka suspend to disk or STD)
-
-To check if hibernation works, you can try to hibernate in the "reboot" mode:
-
-# echo reboot > /sys/power/disk
-# echo disk > /sys/power/state
-
-and the system should create a hibernation image, reboot, resume and get back to
-the command prompt where you have started the transition.  If that happens,
-hibernation is most likely to work correctly.  Still, you need to repeat the
-test at least a couple of times in a row for confidence.  [This is necessary,
-because some problems only show up on a second attempt at suspending and
-resuming the system.]  Moreover, hibernating in the "reboot" and "shutdown"
-modes causes the PM core to skip some platform-related callbacks which on ACPI
-systems might be necessary to make hibernation work.  Thus, if your machine fails
-to hibernate or resume in the "reboot" mode, you should try the "platform" mode:
-
-# echo platform > /sys/power/disk
-# echo disk > /sys/power/state
-
-which is the default and recommended mode of hibernation.
-
-Unfortunately, the "platform" mode of hibernation does not work on some systems
-with broken BIOSes.  In such cases the "shutdown" mode of hibernation might
-work:
-
-# echo shutdown > /sys/power/disk
-# echo disk > /sys/power/state
-
-(it is similar to the "reboot" mode, but it requires you to press the power
-button to make the system resume).
-
-If neither "platform" nor "shutdown" hibernation mode works, you will need to
-identify what goes wrong.
-
-a) Test modes of hibernation
-
-To find out why hibernation fails on your system, you can use a special testing
-facility available if the kernel is compiled with CONFIG_PM_DEBUG set.  Then,
-there is the file /sys/power/pm_test that can be used to make the hibernation
-core run in a test mode.  There are 5 test modes available:
-
-freezer
-- test the freezing of processes
-
-devices
-- test the freezing of processes and suspending of devices
-
-platform
-- test the freezing of processes, suspending of devices and platform
-  global control methods(*)
-
-processors
-- test the freezing of processes, suspending of devices, platform
-  global control methods(*) and the disabling of nonboot CPUs
-
-core
-- test the freezing of processes, suspending of devices, platform global
-  control methods(*), the disabling of nonboot CPUs and suspending of
-  platform/system devices
-
-(*) the platform global control methods are only available on ACPI systems
-    and are only tested if the hibernation mode is set to "platform"
-
-To use one of them it is necessary to write the corresponding string to
-/sys/power/pm_test (eg. "devices" to test the freezing of processes and
-suspending devices) and issue the standard hibernation commands.  For example,
-to use the "devices" test mode along with the "platform" mode of hibernation,
-you should do the following:
-
-# echo devices > /sys/power/pm_test
-# echo platform > /sys/power/disk
-# echo disk > /sys/power/state
-
-Then, the kernel will try to freeze processes, suspend devices, wait a few
-seconds (5 by default, but configurable by the suspend.pm_test_delay module
-parameter), resume devices and thaw processes.  If "platform" is written to
-/sys/power/pm_test , then after suspending devices the kernel will additionally
-invoke the global control methods (eg. ACPI global control methods) used to
-prepare the platform firmware for hibernation.  Next, it will wait a
-configurable number of seconds and invoke the platform (eg. ACPI) global
-methods used to cancel hibernation etc.
-
-Writing "none" to /sys/power/pm_test causes the kernel to switch to the normal
-hibernation/suspend operations.  Also, when open for reading, /sys/power/pm_test
-contains a space-separated list of all available tests (including "none" that
-represents the normal functionality) in which the current test level is
-indicated by square brackets.
-
-Generally, as you can see, each test level is more "invasive" than the previous
-one and the "core" level tests the hardware and drivers as deeply as possible
-without creating a hibernation image.  Obviously, if the "devices" test fails,
-the "platform" test will fail as well and so on.  Thus, as a rule of thumb, you
-should try the test modes starting from "freezer", through "devices", "platform"
-and "processors" up to "core" (repeat the test on each level a couple of times
-to make sure that any random factors are avoided).
-
-If the "freezer" test fails, there is a task that cannot be frozen (in that case
-it usually is possible to identify the offending task by analysing the output of
-dmesg obtained after the failing test).  Failure at this level usually means
-that there is a problem with the tasks freezer subsystem that should be
-reported.
-
-If the "devices" test fails, most likely there is a driver that cannot suspend
-or resume its device (in the latter case the system may hang or become unstable
-after the test, so please take that into consideration).  To find this driver,
-you can carry out a binary search according to the rules:
-- if the test fails, unload a half of the drivers currently loaded and repeat
-(that would probably involve rebooting the system, so always note what drivers
-have been loaded before the test),
-- if the test succeeds, load a half of the drivers you have unloaded most
-recently and repeat.
-
-Once you have found the failing driver (there can be more than just one of
-them), you have to unload it every time before hibernation.  In that case please
-make sure to report the problem with the driver.
-
-It is also possible that the "devices" test will still fail after you have
-unloaded all modules. In that case, you may want to look in your kernel
-configuration for the drivers that can be compiled as modules (and test again
-with these drivers compiled as modules).  You may also try to use some special
-kernel command line options such as "noapic", "noacpi" or even "acpi=off".
-
-If the "platform" test fails, there is a problem with the handling of the
-platform (eg. ACPI) firmware on your system.  In that case the "platform" mode
-of hibernation is not likely to work.  You can try the "shutdown" mode, but that
-is rather a poor man's workaround.
-
-If the "processors" test fails, the disabling/enabling of nonboot CPUs does not
-work (of course, this only may be an issue on SMP systems) and the problem
-should be reported.  In that case you can also try to switch the nonboot CPUs
-off and on using the /sys/devices/system/cpu/cpu*/online sysfs attributes and
-see if that works.
-
-If the "core" test fails, which means that suspending of the system/platform
-devices has failed (these devices are suspended on one CPU with interrupts off),
-the problem is most probably hardware-related and serious, so it should be
-reported.
-
-A failure of any of the "platform", "processors" or "core" tests may cause your
-system to hang or become unstable, so please beware.  Such a failure usually
-indicates a serious problem that very well may be related to the hardware, but
-please report it anyway.
-
-b) Testing minimal configuration
-
-If all of the hibernation test modes work, you can boot the system with the
-"init=/bin/bash" command line parameter and attempt to hibernate in the
-"reboot", "shutdown" and "platform" modes.  If that does not work, there
-probably is a problem with a driver statically compiled into the kernel and you
-can try to compile more drivers as modules, so that they can be tested
-individually.  Otherwise, there is a problem with a modular driver and you can
-find it by loading a half of the modules you normally use and binary searching
-in accordance with the algorithm:
-- if there are n modules loaded and the attempt to suspend and resume fails,
-unload n/2 of the modules and try again (that would probably involve rebooting
-the system),
-- if there are n modules loaded and the attempt to suspend and resume succeeds,
-load n/2 modules more and try again.
-
-Again, if you find the offending module(s), it(they) must be unloaded every time
-before hibernation, and please report the problem with it(them).
-
-c) Using the "test_resume" hibernation option
-
-/sys/power/disk generally tells the kernel what to do after creating a
-hibernation image.  One of the available options is "test_resume" which
-causes the just created image to be used for immediate restoration.  Namely,
-after doing:
-
-# echo test_resume > /sys/power/disk
-# echo disk > /sys/power/state
-
-a hibernation image will be created and a resume from it will be triggered
-immediately without involving the platform firmware in any way.
-
-That test can be used to check if failures to resume from hibernation are
-related to bad interactions with the platform firmware.  That is, if the above
-works every time, but resume from actual hibernation does not work or is
-unreliable, the platform firmware may be responsible for the failures.
-
-On architectures and platforms that support using different kernels to restore
-hibernation images (that is, the kernel used to read the image from storage and
-load it into memory is different from the one included in the image) or support
-kernel address space randomization, it also can be used to check if failures
-to resume may be related to the differences between the restore and image
-kernels.
-
-d) Advanced debugging
-
-In case that hibernation does not work on your system even in the minimal
-configuration and compiling more drivers as modules is not practical or some
-modules cannot be unloaded, you can use one of the more advanced debugging
-techniques to find the problem.  First, if there is a serial port in your box,
-you can boot the kernel with the 'no_console_suspend' parameter and try to log
-kernel messages using the serial console.  This may provide you with some
-information about the reasons of the suspend (resume) failure.  Alternatively,
-it may be possible to use a FireWire port for debugging with firescope
-(http://v3.sk/~lkundrak/firescope/).  On x86 it is also possible to
-use the PM_TRACE mechanism documented in Documentation/power/s2ram.txt .
-
-2. Testing suspend to RAM (STR)
-
-To verify that the STR works, it is generally more convenient to use the s2ram
-tool available from http://suspend.sf.net and documented at
-http://en.opensuse.org/SDB:Suspend_to_RAM (S2RAM_LINK).
-
-Namely, after writing "freezer", "devices", "platform", "processors", or "core"
-into /sys/power/pm_test (available if the kernel is compiled with
-CONFIG_PM_DEBUG set) the suspend code will work in the test mode corresponding
-to given string.  The STR test modes are defined in the same way as for
-hibernation, so please refer to Section 1 for more information about them.  In
-particular, the "core" test allows you to test everything except for the actual
-invocation of the platform firmware in order to put the system into the sleep
-state.
-
-Among other things, the testing with the help of /sys/power/pm_test may allow
-you to identify drivers that fail to suspend or resume their devices.  They
-should be unloaded every time before an STR transition.
-
-Next, you can follow the instructions at S2RAM_LINK to test the system, but if
-it does not work "out of the box", you may need to boot it with
-"init=/bin/bash" and test s2ram in the minimal configuration.  In that case,
-you may be able to search for failing drivers by following the procedure
-analogous to the one described in section 1.  If you find some failing drivers,
-you will have to unload them every time before an STR transition (ie. before
-you run s2ram), and please report the problems with them.
-
-There is a debugfs entry which shows the suspend to RAM statistics. Here is an
-example of its output.
-       # mount -t debugfs none /sys/kernel/debug
-       # cat /sys/kernel/debug/suspend_stats
-       success: 20
-       fail: 5
-       failed_freeze: 0
-       failed_prepare: 0
-       failed_suspend: 5
-       failed_suspend_noirq: 0
-       failed_resume: 0
-       failed_resume_noirq: 0
-       failures:
-         last_failed_dev:      alarm
-                               adc
-         last_failed_errno:    -16
-                               -16
-         last_failed_step:     suspend
-                               suspend
-Field success means the success number of suspend to RAM, and field fail means
-the failure number. Others are the failure number of different steps of suspend
-to RAM. suspend_stats just lists the last 2 failed devices, error number and
-failed step of suspend.
diff --git a/Documentation/power/charger-manager.rst b/Documentation/power/charger-manager.rst
new file mode 100644 (file)
index 0000000..84fab93
--- /dev/null
@@ -0,0 +1,205 @@
+===============
+Charger Manager
+===============
+
+       (C) 2011 MyungJoo Ham <myungjoo.ham@samsung.com>, GPL
+
+Charger Manager provides in-kernel battery charger management that
+requires temperature monitoring during suspend-to-RAM state
+and where each battery may have multiple chargers attached and the userland
+wants to look at the aggregated information of the multiple chargers.
+
+Charger Manager is a platform_driver with power-supply-class entries.
+An instance of Charger Manager (a platform-device created with Charger-Manager)
+represents an independent battery with chargers. If there are multiple
+batteries with their own chargers acting independently in a system,
+the system may need multiple instances of Charger Manager.
+
+1. Introduction
+===============
+
+Charger Manager supports the following:
+
+* Support for multiple chargers (e.g., a device with USB, AC, and solar panels)
+       A system may have multiple chargers (or power sources) and some of
+       they may be activated at the same time. Each charger may have its
+       own power-supply-class and each power-supply-class can provide
+       different information about the battery status. This framework
+       aggregates charger-related information from multiple sources and
+       shows combined information as a single power-supply-class.
+
+* Support for in suspend-to-RAM polling (with suspend_again callback)
+       While the battery is being charged and the system is in suspend-to-RAM,
+       we may need to monitor the battery health by looking at the ambient or
+       battery temperature. We can accomplish this by waking up the system
+       periodically. However, such a method wakes up devices unnecessarily for
+       monitoring the battery health and tasks, and user processes that are
+       supposed to be kept suspended. That, in turn, incurs unnecessary power
+       consumption and slow down charging process. Or even, such peak power
+       consumption can stop chargers in the middle of charging
+       (external power input < device power consumption), which not
+       only affects the charging time, but the lifespan of the battery.
+
+       Charger Manager provides a function "cm_suspend_again" that can be
+       used as suspend_again callback of platform_suspend_ops. If the platform
+       requires tasks other than cm_suspend_again, it may implement its own
+       suspend_again callback that calls cm_suspend_again in the middle.
+       Normally, the platform will need to resume and suspend some devices
+       that are used by Charger Manager.
+
+* Support for premature full-battery event handling
+       If the battery voltage drops by "fullbatt_vchkdrop_uV" after
+       "fullbatt_vchkdrop_ms" from the full-battery event, the framework
+       restarts charging. This check is also performed while suspended by
+       setting wakeup time accordingly and using suspend_again.
+
+* Support for uevent-notify
+       With the charger-related events, the device sends
+       notification to users with UEVENT.
+
+2. Global Charger-Manager Data related with suspend_again
+=========================================================
+In order to setup Charger Manager with suspend-again feature
+(in-suspend monitoring), the user should provide charger_global_desc
+with setup_charger_manager(`struct charger_global_desc *`).
+This charger_global_desc data for in-suspend monitoring is global
+as the name suggests. Thus, the user needs to provide only once even
+if there are multiple batteries. If there are multiple batteries, the
+multiple instances of Charger Manager share the same charger_global_desc
+and it will manage in-suspend monitoring for all instances of Charger Manager.
+
+The user needs to provide all the three entries to `struct charger_global_desc`
+properly in order to activate in-suspend monitoring:
+
+`char *rtc_name;`
+       The name of rtc (e.g., "rtc0") used to wakeup the system from
+       suspend for Charger Manager. The alarm interrupt (AIE) of the rtc
+       should be able to wake up the system from suspend. Charger Manager
+       saves and restores the alarm value and use the previously-defined
+       alarm if it is going to go off earlier than Charger Manager so that
+       Charger Manager does not interfere with previously-defined alarms.
+
+`bool (*rtc_only_wakeup)(void);`
+       This callback should let CM know whether
+       the wakeup-from-suspend is caused only by the alarm of "rtc" in the
+       same struct. If there is any other wakeup source triggered the
+       wakeup, it should return false. If the "rtc" is the only wakeup
+       reason, it should return true.
+
+`bool assume_timer_stops_in_suspend;`
+       if true, Charger Manager assumes that
+       the timer (CM uses jiffies as timer) stops during suspend. Then, CM
+       assumes that the suspend-duration is same as the alarm length.
+
+
+3. How to setup suspend_again
+=============================
+Charger Manager provides a function "extern bool cm_suspend_again(void)".
+When cm_suspend_again is called, it monitors every battery. The suspend_ops
+callback of the system's platform_suspend_ops can call cm_suspend_again
+function to know whether Charger Manager wants to suspend again or not.
+If there are no other devices or tasks that want to use suspend_again
+feature, the platform_suspend_ops may directly refer to cm_suspend_again
+for its suspend_again callback.
+
+The cm_suspend_again() returns true (meaning "I want to suspend again")
+if the system was woken up by Charger Manager and the polling
+(in-suspend monitoring) results in "normal".
+
+4. Charger-Manager Data (struct charger_desc)
+=============================================
+For each battery charged independently from other batteries (if a series of
+batteries are charged by a single charger, they are counted as one independent
+battery), an instance of Charger Manager is attached to it. The following
+
+struct charger_desc elements:
+
+`char *psy_name;`
+       The power-supply-class name of the battery. Default is
+       "battery" if psy_name is NULL. Users can access the psy entries
+       at "/sys/class/power_supply/[psy_name]/".
+
+`enum polling_modes polling_mode;`
+         CM_POLL_DISABLE:
+               do not poll this battery.
+         CM_POLL_ALWAYS:
+               always poll this battery.
+         CM_POLL_EXTERNAL_POWER_ONLY:
+               poll this battery if and only if an external power
+               source is attached.
+         CM_POLL_CHARGING_ONLY:
+               poll this battery if and only if the battery is being charged.
+
+`unsigned int fullbatt_vchkdrop_ms; / unsigned int fullbatt_vchkdrop_uV;`
+       If both have non-zero values, Charger Manager will check the
+       battery voltage drop fullbatt_vchkdrop_ms after the battery is fully
+       charged. If the voltage drop is over fullbatt_vchkdrop_uV, Charger
+       Manager will try to recharge the battery by disabling and enabling
+       chargers. Recharge with voltage drop condition only (without delay
+       condition) is needed to be implemented with hardware interrupts from
+       fuel gauges or charger devices/chips.
+
+`unsigned int fullbatt_uV;`
+       If specified with a non-zero value, Charger Manager assumes
+       that the battery is full (capacity = 100) if the battery is not being
+       charged and the battery voltage is equal to or greater than
+       fullbatt_uV.
+
+`unsigned int polling_interval_ms;`
+       Required polling interval in ms. Charger Manager will poll
+       this battery every polling_interval_ms or more frequently.
+
+`enum data_source battery_present;`
+       CM_BATTERY_PRESENT:
+               assume that the battery exists.
+       CM_NO_BATTERY:
+               assume that the battery does not exists.
+       CM_FUEL_GAUGE:
+               get battery presence information from fuel gauge.
+       CM_CHARGER_STAT:
+               get battery presence from chargers.
+
+`char **psy_charger_stat;`
+       An array ending with NULL that has power-supply-class names of
+       chargers. Each power-supply-class should provide "PRESENT" (if
+       battery_present is "CM_CHARGER_STAT"), "ONLINE" (shows whether an
+       external power source is attached or not), and "STATUS" (shows whether
+       the battery is {"FULL" or not FULL} or {"FULL", "Charging",
+       "Discharging", "NotCharging"}).
+
+`int num_charger_regulators; / struct regulator_bulk_data *charger_regulators;`
+       Regulators representing the chargers in the form for
+       regulator framework's bulk functions.
+
+`char *psy_fuel_gauge;`
+       Power-supply-class name of the fuel gauge.
+
+`int (*temperature_out_of_range)(int *mC); / bool measure_battery_temp;`
+       This callback returns 0 if the temperature is safe for charging,
+       a positive number if it is too hot to charge, and a negative number
+       if it is too cold to charge. With the variable mC, the callback returns
+       the temperature in 1/1000 of centigrade.
+       The source of temperature can be battery or ambient one according to
+       the value of measure_battery_temp.
+
+
+5. Notify Charger-Manager of charger events: cm_notify_event()
+==============================================================
+If there is an charger event is required to notify
+Charger Manager, a charger device driver that triggers the event can call
+cm_notify_event(psy, type, msg) to notify the corresponding Charger Manager.
+In the function, psy is the charger driver's power_supply pointer, which is
+associated with Charger-Manager. The parameter "type"
+is the same as irq's type (enum cm_event_types). The event message "msg" is
+optional and is effective only if the event type is "UNDESCRIBED" or "OTHERS".
+
+6. Other Considerations
+=======================
+
+At the charger/battery-related events such as battery-pulled-out,
+charger-pulled-out, charger-inserted, DCIN-over/under-voltage, charger-stopped,
+and others critical to chargers, the system should be configured to wake up.
+At least the following should wake up the system from a suspend:
+a) charger-on/off b) external-power-in/out c) battery-in/out (while charging)
+
+It is usually accomplished by configuring the PMIC as a wakeup source.
diff --git a/Documentation/power/charger-manager.txt b/Documentation/power/charger-manager.txt
deleted file mode 100644 (file)
index 9ff1105..0000000
+++ /dev/null
@@ -1,200 +0,0 @@
-Charger Manager
-       (C) 2011 MyungJoo Ham <myungjoo.ham@samsung.com>, GPL
-
-Charger Manager provides in-kernel battery charger management that
-requires temperature monitoring during suspend-to-RAM state
-and where each battery may have multiple chargers attached and the userland
-wants to look at the aggregated information of the multiple chargers.
-
-Charger Manager is a platform_driver with power-supply-class entries.
-An instance of Charger Manager (a platform-device created with Charger-Manager)
-represents an independent battery with chargers. If there are multiple
-batteries with their own chargers acting independently in a system,
-the system may need multiple instances of Charger Manager.
-
-1. Introduction
-===============
-
-Charger Manager supports the following:
-
-* Support for multiple chargers (e.g., a device with USB, AC, and solar panels)
-       A system may have multiple chargers (or power sources) and some of
-       they may be activated at the same time. Each charger may have its
-       own power-supply-class and each power-supply-class can provide
-       different information about the battery status. This framework
-       aggregates charger-related information from multiple sources and
-       shows combined information as a single power-supply-class.
-
-* Support for in suspend-to-RAM polling (with suspend_again callback)
-       While the battery is being charged and the system is in suspend-to-RAM,
-       we may need to monitor the battery health by looking at the ambient or
-       battery temperature. We can accomplish this by waking up the system
-       periodically. However, such a method wakes up devices unnecessarily for
-       monitoring the battery health and tasks, and user processes that are
-       supposed to be kept suspended. That, in turn, incurs unnecessary power
-       consumption and slow down charging process. Or even, such peak power
-       consumption can stop chargers in the middle of charging
-       (external power input < device power consumption), which not
-       only affects the charging time, but the lifespan of the battery.
-
-       Charger Manager provides a function "cm_suspend_again" that can be
-       used as suspend_again callback of platform_suspend_ops. If the platform
-       requires tasks other than cm_suspend_again, it may implement its own
-       suspend_again callback that calls cm_suspend_again in the middle.
-       Normally, the platform will need to resume and suspend some devices
-       that are used by Charger Manager.
-
-* Support for premature full-battery event handling
-       If the battery voltage drops by "fullbatt_vchkdrop_uV" after
-       "fullbatt_vchkdrop_ms" from the full-battery event, the framework
-       restarts charging. This check is also performed while suspended by
-       setting wakeup time accordingly and using suspend_again.
-
-* Support for uevent-notify
-       With the charger-related events, the device sends
-       notification to users with UEVENT.
-
-2. Global Charger-Manager Data related with suspend_again
-========================================================
-In order to setup Charger Manager with suspend-again feature
-(in-suspend monitoring), the user should provide charger_global_desc
-with setup_charger_manager(struct charger_global_desc *).
-This charger_global_desc data for in-suspend monitoring is global
-as the name suggests. Thus, the user needs to provide only once even
-if there are multiple batteries. If there are multiple batteries, the
-multiple instances of Charger Manager share the same charger_global_desc
-and it will manage in-suspend monitoring for all instances of Charger Manager.
-
-The user needs to provide all the three entries properly in order to activate
-in-suspend monitoring:
-
-struct charger_global_desc {
-
-char *rtc_name;
-       : The name of rtc (e.g., "rtc0") used to wakeup the system from
-       suspend for Charger Manager. The alarm interrupt (AIE) of the rtc
-       should be able to wake up the system from suspend. Charger Manager
-       saves and restores the alarm value and use the previously-defined
-       alarm if it is going to go off earlier than Charger Manager so that
-       Charger Manager does not interfere with previously-defined alarms.
-
-bool (*rtc_only_wakeup)(void);
-       : This callback should let CM know whether
-       the wakeup-from-suspend is caused only by the alarm of "rtc" in the
-       same struct. If there is any other wakeup source triggered the
-       wakeup, it should return false. If the "rtc" is the only wakeup
-       reason, it should return true.
-
-bool assume_timer_stops_in_suspend;
-       : if true, Charger Manager assumes that
-       the timer (CM uses jiffies as timer) stops during suspend. Then, CM
-       assumes that the suspend-duration is same as the alarm length.
-};
-
-3. How to setup suspend_again
-=============================
-Charger Manager provides a function "extern bool cm_suspend_again(void)".
-When cm_suspend_again is called, it monitors every battery. The suspend_ops
-callback of the system's platform_suspend_ops can call cm_suspend_again
-function to know whether Charger Manager wants to suspend again or not.
-If there are no other devices or tasks that want to use suspend_again
-feature, the platform_suspend_ops may directly refer to cm_suspend_again
-for its suspend_again callback.
-
-The cm_suspend_again() returns true (meaning "I want to suspend again")
-if the system was woken up by Charger Manager and the polling
-(in-suspend monitoring) results in "normal".
-
-4. Charger-Manager Data (struct charger_desc)
-=============================================
-For each battery charged independently from other batteries (if a series of
-batteries are charged by a single charger, they are counted as one independent
-battery), an instance of Charger Manager is attached to it.
-
-struct charger_desc {
-
-char *psy_name;
-       : The power-supply-class name of the battery. Default is
-       "battery" if psy_name is NULL. Users can access the psy entries
-       at "/sys/class/power_supply/[psy_name]/".
-
-enum polling_modes polling_mode;
-       : CM_POLL_DISABLE: do not poll this battery.
-         CM_POLL_ALWAYS: always poll this battery.
-         CM_POLL_EXTERNAL_POWER_ONLY: poll this battery if and only if
-                                      an external power source is attached.
-         CM_POLL_CHARGING_ONLY: poll this battery if and only if the
-                                battery is being charged.
-
-unsigned int fullbatt_vchkdrop_ms;
-unsigned int fullbatt_vchkdrop_uV;
-       : If both have non-zero values, Charger Manager will check the
-       battery voltage drop fullbatt_vchkdrop_ms after the battery is fully
-       charged. If the voltage drop is over fullbatt_vchkdrop_uV, Charger
-       Manager will try to recharge the battery by disabling and enabling
-       chargers. Recharge with voltage drop condition only (without delay
-       condition) is needed to be implemented with hardware interrupts from
-       fuel gauges or charger devices/chips.
-
-unsigned int fullbatt_uV;
-       : If specified with a non-zero value, Charger Manager assumes
-       that the battery is full (capacity = 100) if the battery is not being
-       charged and the battery voltage is equal to or greater than
-       fullbatt_uV.
-
-unsigned int polling_interval_ms;
-       : Required polling interval in ms. Charger Manager will poll
-       this battery every polling_interval_ms or more frequently.
-
-enum data_source battery_present;
-       : CM_BATTERY_PRESENT: assume that the battery exists.
-       CM_NO_BATTERY: assume that the battery does not exists.
-       CM_FUEL_GAUGE: get battery presence information from fuel gauge.
-       CM_CHARGER_STAT: get battery presence from chargers.
-
-char **psy_charger_stat;
-       : An array ending with NULL that has power-supply-class names of
-       chargers. Each power-supply-class should provide "PRESENT" (if
-       battery_present is "CM_CHARGER_STAT"), "ONLINE" (shows whether an
-       external power source is attached or not), and "STATUS" (shows whether
-       the battery is {"FULL" or not FULL} or {"FULL", "Charging",
-       "Discharging", "NotCharging"}).
-
-int num_charger_regulators;
-struct regulator_bulk_data *charger_regulators;
-       : Regulators representing the chargers in the form for
-       regulator framework's bulk functions.
-
-char *psy_fuel_gauge;
-       : Power-supply-class name of the fuel gauge.
-
-int (*temperature_out_of_range)(int *mC);
-bool measure_battery_temp;
-       : This callback returns 0 if the temperature is safe for charging,
-       a positive number if it is too hot to charge, and a negative number
-       if it is too cold to charge. With the variable mC, the callback returns
-       the temperature in 1/1000 of centigrade.
-       The source of temperature can be battery or ambient one according to
-       the value of measure_battery_temp.
-};
-
-5. Notify Charger-Manager of charger events: cm_notify_event()
-=========================================================
-If there is an charger event is required to notify
-Charger Manager, a charger device driver that triggers the event can call
-cm_notify_event(psy, type, msg) to notify the corresponding Charger Manager.
-In the function, psy is the charger driver's power_supply pointer, which is
-associated with Charger-Manager. The parameter "type"
-is the same as irq's type (enum cm_event_types). The event message "msg" is
-optional and is effective only if the event type is "UNDESCRIBED" or "OTHERS".
-
-6. Other Considerations
-=======================
-
-At the charger/battery-related events such as battery-pulled-out,
-charger-pulled-out, charger-inserted, DCIN-over/under-voltage, charger-stopped,
-and others critical to chargers, the system should be configured to wake up.
-At least the following should wake up the system from a suspend:
-a) charger-on/off b) external-power-in/out c) battery-in/out (while charging)
-
-It is usually accomplished by configuring the PMIC as a wakeup source.
diff --git a/Documentation/power/drivers-testing.rst b/Documentation/power/drivers-testing.rst
new file mode 100644 (file)
index 0000000..e53f199
--- /dev/null
@@ -0,0 +1,51 @@
+====================================================
+Testing suspend and resume support in device drivers
+====================================================
+
+       (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
+
+1. Preparing the test system
+============================
+
+Unfortunately, to effectively test the support for the system-wide suspend and
+resume transitions in a driver, it is necessary to suspend and resume a fully
+functional system with this driver loaded.  Moreover, that should be done
+several times, preferably several times in a row, and separately for hibernation
+(aka suspend to disk or STD) and suspend to RAM (STR), because each of these
+cases involves slightly different operations and different interactions with
+the machine's BIOS.
+
+Of course, for this purpose the test system has to be known to suspend and
+resume without the driver being tested.  Thus, if possible, you should first
+resolve all suspend/resume-related problems in the test system before you start
+testing the new driver.  Please see Documentation/power/basic-pm-debugging.rst
+for more information about the debugging of suspend/resume functionality.
+
+2. Testing the driver
+=====================
+
+Once you have resolved the suspend/resume-related problems with your test system
+without the new driver, you are ready to test it:
+
+a) Build the driver as a module, load it and try the test modes of hibernation
+   (see: Documentation/power/basic-pm-debugging.rst, 1).
+
+b) Load the driver and attempt to hibernate in the "reboot", "shutdown" and
+   "platform" modes (see: Documentation/power/basic-pm-debugging.rst, 1).
+
+c) Compile the driver directly into the kernel and try the test modes of
+   hibernation.
+
+d) Attempt to hibernate with the driver compiled directly into the kernel
+   in the "reboot", "shutdown" and "platform" modes.
+
+e) Try the test modes of suspend (see: Documentation/power/basic-pm-debugging.rst,
+   2).  [As far as the STR tests are concerned, it should not matter whether or
+   not the driver is built as a module.]
+
+f) Attempt to suspend to RAM using the s2ram tool with the driver loaded
+   (see: Documentation/power/basic-pm-debugging.rst, 2).
+
+Each of the above tests should be repeated several times and the STD tests
+should be mixed with the STR tests.  If any of them fails, the driver cannot be
+regarded as suspend/resume-safe.
diff --git a/Documentation/power/drivers-testing.txt b/Documentation/power/drivers-testing.txt
deleted file mode 100644 (file)
index 638afdf..0000000
+++ /dev/null
@@ -1,46 +0,0 @@
-Testing suspend and resume support in device drivers
-       (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
-
-1. Preparing the test system
-
-Unfortunately, to effectively test the support for the system-wide suspend and
-resume transitions in a driver, it is necessary to suspend and resume a fully
-functional system with this driver loaded.  Moreover, that should be done
-several times, preferably several times in a row, and separately for hibernation
-(aka suspend to disk or STD) and suspend to RAM (STR), because each of these
-cases involves slightly different operations and different interactions with
-the machine's BIOS.
-
-Of course, for this purpose the test system has to be known to suspend and
-resume without the driver being tested.  Thus, if possible, you should first
-resolve all suspend/resume-related problems in the test system before you start
-testing the new driver.  Please see Documentation/power/basic-pm-debugging.txt
-for more information about the debugging of suspend/resume functionality.
-
-2. Testing the driver
-
-Once you have resolved the suspend/resume-related problems with your test system
-without the new driver, you are ready to test it:
-
-a) Build the driver as a module, load it and try the test modes of hibernation
-   (see: Documentation/power/basic-pm-debugging.txt, 1).
-
-b) Load the driver and attempt to hibernate in the "reboot", "shutdown" and
-   "platform" modes (see: Documentation/power/basic-pm-debugging.txt, 1).
-
-c) Compile the driver directly into the kernel and try the test modes of
-   hibernation.
-
-d) Attempt to hibernate with the driver compiled directly into the kernel
-   in the "reboot", "shutdown" and "platform" modes.
-
-e) Try the test modes of suspend (see: Documentation/power/basic-pm-debugging.txt,
-   2).  [As far as the STR tests are concerned, it should not matter whether or
-   not the driver is built as a module.]
-
-f) Attempt to suspend to RAM using the s2ram tool with the driver loaded
-   (see: Documentation/power/basic-pm-debugging.txt, 2).
-
-Each of the above tests should be repeated several times and the STD tests
-should be mixed with the STR tests.  If any of them fails, the driver cannot be
-regarded as suspend/resume-safe.
diff --git a/Documentation/power/energy-model.rst b/Documentation/power/energy-model.rst
new file mode 100644 (file)
index 0000000..90a345d
--- /dev/null
@@ -0,0 +1,147 @@
+====================
+Energy Model of CPUs
+====================
+
+1. Overview
+-----------
+
+The Energy Model (EM) framework serves as an interface between drivers knowing
+the power consumed by CPUs at various performance levels, and the kernel
+subsystems willing to use that information to make energy-aware decisions.
+
+The source of the information about the power consumed by CPUs can vary greatly
+from one platform to another. These power costs can be estimated using
+devicetree data in some cases. In others, the firmware will know better.
+Alternatively, userspace might be best positioned. And so on. In order to avoid
+each and every client subsystem to re-implement support for each and every
+possible source of information on its own, the EM framework intervenes as an
+abstraction layer which standardizes the format of power cost tables in the
+kernel, hence enabling to avoid redundant work.
+
+The figure below depicts an example of drivers (Arm-specific here, but the
+approach is applicable to any architecture) providing power costs to the EM
+framework, and interested clients reading the data from it::
+
+       +---------------+  +-----------------+  +---------------+
+       | Thermal (IPA) |  | Scheduler (EAS) |  |     Other     |
+       +---------------+  +-----------------+  +---------------+
+               |                   | em_pd_energy()    |
+               |                   | em_cpu_get()      |
+               +---------+         |         +---------+
+                         |         |         |
+                         v         v         v
+                        +---------------------+
+                        |    Energy Model     |
+                        |     Framework       |
+                        +---------------------+
+                           ^       ^       ^
+                           |       |       | em_register_perf_domain()
+                +----------+       |       +---------+
+                |                  |                 |
+        +---------------+  +---------------+  +--------------+
+        |  cpufreq-dt   |  |   arm_scmi    |  |    Other     |
+        +---------------+  +---------------+  +--------------+
+                ^                  ^                 ^
+                |                  |                 |
+        +--------------+   +---------------+  +--------------+
+        | Device Tree  |   |   Firmware    |  |      ?       |
+        +--------------+   +---------------+  +--------------+
+
+The EM framework manages power cost tables per 'performance domain' in the
+system. A performance domain is a group of CPUs whose performance is scaled
+together. Performance domains generally have a 1-to-1 mapping with CPUFreq
+policies. All CPUs in a performance domain are required to have the same
+micro-architecture. CPUs in different performance domains can have different
+micro-architectures.
+
+
+2. Core APIs
+------------
+
+2.1 Config options
+^^^^^^^^^^^^^^^^^^
+
+CONFIG_ENERGY_MODEL must be enabled to use the EM framework.
+
+
+2.2 Registration of performance domains
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Drivers are expected to register performance domains into the EM framework by
+calling the following API::
+
+  int em_register_perf_domain(cpumask_t *span, unsigned int nr_states,
+                             struct em_data_callback *cb);
+
+Drivers must specify the CPUs of the performance domains using the cpumask
+argument, and provide a callback function returning <frequency, power> tuples
+for each capacity state. The callback function provided by the driver is free
+to fetch data from any relevant location (DT, firmware, ...), and by any mean
+deemed necessary. See Section 3. for an example of driver implementing this
+callback, and kernel/power/energy_model.c for further documentation on this
+API.
+
+
+2.3 Accessing performance domains
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Subsystems interested in the energy model of a CPU can retrieve it using the
+em_cpu_get() API. The energy model tables are allocated once upon creation of
+the performance domains, and kept in memory untouched.
+
+The energy consumed by a performance domain can be estimated using the
+em_pd_energy() API. The estimation is performed assuming that the schedutil
+CPUfreq governor is in use.
+
+More details about the above APIs can be found in include/linux/energy_model.h.
+
+
+3. Example driver
+-----------------
+
+This section provides a simple example of a CPUFreq driver registering a
+performance domain in the Energy Model framework using the (fake) 'foo'
+protocol. The driver implements an est_power() function to be provided to the
+EM framework::
+
+  -> drivers/cpufreq/foo_cpufreq.c
+
+  01   static int est_power(unsigned long *mW, unsigned long *KHz, int cpu)
+  02   {
+  03           long freq, power;
+  04
+  05           /* Use the 'foo' protocol to ceil the frequency */
+  06           freq = foo_get_freq_ceil(cpu, *KHz);
+  07           if (freq < 0);
+  08                   return freq;
+  09
+  10           /* Estimate the power cost for the CPU at the relevant freq. */
+  11           power = foo_estimate_power(cpu, freq);
+  12           if (power < 0);
+  13                   return power;
+  14
+  15           /* Return the values to the EM framework */
+  16           *mW = power;
+  17           *KHz = freq;
+  18
+  19           return 0;
+  20   }
+  21
+  22   static int foo_cpufreq_init(struct cpufreq_policy *policy)
+  23   {
+  24           struct em_data_callback em_cb = EM_DATA_CB(est_power);
+  25           int nr_opp, ret;
+  26
+  27           /* Do the actual CPUFreq init work ... */
+  28           ret = do_foo_cpufreq_init(policy);
+  29           if (ret)
+  30                   return ret;
+  31
+  32           /* Find the number of OPPs for this policy */
+  33           nr_opp = foo_get_nr_opp(policy);
+  34
+  35           /* And register the new performance domain */
+  36           em_register_perf_domain(policy->cpus, nr_opp, &em_cb);
+  37
+  38           return 0;
+  39   }
diff --git a/Documentation/power/energy-model.txt b/Documentation/power/energy-model.txt
deleted file mode 100644 (file)
index a2b0ae4..0000000
+++ /dev/null
@@ -1,144 +0,0 @@
-                           ====================
-                           Energy Model of CPUs
-                           ====================
-
-1. Overview
------------
-
-The Energy Model (EM) framework serves as an interface between drivers knowing
-the power consumed by CPUs at various performance levels, and the kernel
-subsystems willing to use that information to make energy-aware decisions.
-
-The source of the information about the power consumed by CPUs can vary greatly
-from one platform to another. These power costs can be estimated using
-devicetree data in some cases. In others, the firmware will know better.
-Alternatively, userspace might be best positioned. And so on. In order to avoid
-each and every client subsystem to re-implement support for each and every
-possible source of information on its own, the EM framework intervenes as an
-abstraction layer which standardizes the format of power cost tables in the
-kernel, hence enabling to avoid redundant work.
-
-The figure below depicts an example of drivers (Arm-specific here, but the
-approach is applicable to any architecture) providing power costs to the EM
-framework, and interested clients reading the data from it.
-
-       +---------------+  +-----------------+  +---------------+
-       | Thermal (IPA) |  | Scheduler (EAS) |  |     Other     |
-       +---------------+  +-----------------+  +---------------+
-               |                   | em_pd_energy()    |
-               |                   | em_cpu_get()      |
-               +---------+         |         +---------+
-                         |         |         |
-                         v         v         v
-                        +---------------------+
-                        |    Energy Model     |
-                        |     Framework       |
-                        +---------------------+
-                           ^       ^       ^
-                           |       |       | em_register_perf_domain()
-                +----------+       |       +---------+
-                |                  |                 |
-        +---------------+  +---------------+  +--------------+
-        |  cpufreq-dt   |  |   arm_scmi    |  |    Other     |
-        +---------------+  +---------------+  +--------------+
-                ^                  ^                 ^
-                |                  |                 |
-        +--------------+   +---------------+  +--------------+
-        | Device Tree  |   |   Firmware    |  |      ?       |
-        +--------------+   +---------------+  +--------------+
-
-The EM framework manages power cost tables per 'performance domain' in the
-system. A performance domain is a group of CPUs whose performance is scaled
-together. Performance domains generally have a 1-to-1 mapping with CPUFreq
-policies. All CPUs in a performance domain are required to have the same
-micro-architecture. CPUs in different performance domains can have different
-micro-architectures.
-
-
-2. Core APIs
-------------
-
-  2.1 Config options
-
-CONFIG_ENERGY_MODEL must be enabled to use the EM framework.
-
-
-  2.2 Registration of performance domains
-
-Drivers are expected to register performance domains into the EM framework by
-calling the following API:
-
-  int em_register_perf_domain(cpumask_t *span, unsigned int nr_states,
-                             struct em_data_callback *cb);
-
-Drivers must specify the CPUs of the performance domains using the cpumask
-argument, and provide a callback function returning <frequency, power> tuples
-for each capacity state. The callback function provided by the driver is free
-to fetch data from any relevant location (DT, firmware, ...), and by any mean
-deemed necessary. See Section 3. for an example of driver implementing this
-callback, and kernel/power/energy_model.c for further documentation on this
-API.
-
-
-  2.3 Accessing performance domains
-
-Subsystems interested in the energy model of a CPU can retrieve it using the
-em_cpu_get() API. The energy model tables are allocated once upon creation of
-the performance domains, and kept in memory untouched.
-
-The energy consumed by a performance domain can be estimated using the
-em_pd_energy() API. The estimation is performed assuming that the schedutil
-CPUfreq governor is in use.
-
-More details about the above APIs can be found in include/linux/energy_model.h.
-
-
-3. Example driver
------------------
-
-This section provides a simple example of a CPUFreq driver registering a
-performance domain in the Energy Model framework using the (fake) 'foo'
-protocol. The driver implements an est_power() function to be provided to the
-EM framework.
-
- -> drivers/cpufreq/foo_cpufreq.c
-
-01     static int est_power(unsigned long *mW, unsigned long *KHz, int cpu)
-02     {
-03             long freq, power;
-04
-05             /* Use the 'foo' protocol to ceil the frequency */
-06             freq = foo_get_freq_ceil(cpu, *KHz);
-07             if (freq < 0);
-08                     return freq;
-09
-10             /* Estimate the power cost for the CPU at the relevant freq. */
-11             power = foo_estimate_power(cpu, freq);
-12             if (power < 0);
-13                     return power;
-14
-15             /* Return the values to the EM framework */
-16             *mW = power;
-17             *KHz = freq;
-18
-19             return 0;
-20     }
-21
-22     static int foo_cpufreq_init(struct cpufreq_policy *policy)
-23     {
-24             struct em_data_callback em_cb = EM_DATA_CB(est_power);
-25             int nr_opp, ret;
-26
-27             /* Do the actual CPUFreq init work ... */
-28             ret = do_foo_cpufreq_init(policy);
-29             if (ret)
-30                     return ret;
-31
-32             /* Find the number of OPPs for this policy */
-33             nr_opp = foo_get_nr_opp(policy);
-34
-35             /* And register the new performance domain */
-36             em_register_perf_domain(policy->cpus, nr_opp, &em_cb);
-37
-38             return 0;
-39     }
diff --git a/Documentation/power/freezing-of-tasks.rst b/Documentation/power/freezing-of-tasks.rst
new file mode 100644 (file)
index 0000000..ef110fe
--- /dev/null
@@ -0,0 +1,244 @@
+=================
+Freezing of tasks
+=================
+
+(C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
+
+I. What is the freezing of tasks?
+=================================
+
+The freezing of tasks is a mechanism by which user space processes and some
+kernel threads are controlled during hibernation or system-wide suspend (on some
+architectures).
+
+II. How does it work?
+=====================
+
+There are three per-task flags used for that, PF_NOFREEZE, PF_FROZEN
+and PF_FREEZER_SKIP (the last one is auxiliary).  The tasks that have
+PF_NOFREEZE unset (all user space processes and some kernel threads) are
+regarded as 'freezable' and treated in a special way before the system enters a
+suspend state as well as before a hibernation image is created (in what follows
+we only consider hibernation, but the description also applies to suspend).
+
+Namely, as the first step of the hibernation procedure the function
+freeze_processes() (defined in kernel/power/process.c) is called.  A system-wide
+variable system_freezing_cnt (as opposed to a per-task flag) is used to indicate
+whether the system is to undergo a freezing operation. And freeze_processes()
+sets this variable.  After this, it executes try_to_freeze_tasks() that sends a
+fake signal to all user space processes, and wakes up all the kernel threads.
+All freezable tasks must react to that by calling try_to_freeze(), which
+results in a call to __refrigerator() (defined in kernel/freezer.c), which sets
+the task's PF_FROZEN flag, changes its state to TASK_UNINTERRUPTIBLE and makes
+it loop until PF_FROZEN is cleared for it. Then, we say that the task is
+'frozen' and therefore the set of functions handling this mechanism is referred
+to as 'the freezer' (these functions are defined in kernel/power/process.c,
+kernel/freezer.c & include/linux/freezer.h). User space processes are generally
+frozen before kernel threads.
+
+__refrigerator() must not be called directly.  Instead, use the
+try_to_freeze() function (defined in include/linux/freezer.h), that checks
+if the task is to be frozen and makes the task enter __refrigerator().
+
+For user space processes try_to_freeze() is called automatically from the
+signal-handling code, but the freezable kernel threads need to call it
+explicitly in suitable places or use the wait_event_freezable() or
+wait_event_freezable_timeout() macros (defined in include/linux/freezer.h)
+that combine interruptible sleep with checking if the task is to be frozen and
+calling try_to_freeze().  The main loop of a freezable kernel thread may look
+like the following one::
+
+       set_freezable();
+       do {
+               hub_events();
+               wait_event_freezable(khubd_wait,
+                               !list_empty(&hub_event_list) ||
+                               kthread_should_stop());
+       } while (!kthread_should_stop() || !list_empty(&hub_event_list));
+
+(from drivers/usb/core/hub.c::hub_thread()).
+
+If a freezable kernel thread fails to call try_to_freeze() after the freezer has
+initiated a freezing operation, the freezing of tasks will fail and the entire
+hibernation operation will be cancelled.  For this reason, freezable kernel
+threads must call try_to_freeze() somewhere or use one of the
+wait_event_freezable() and wait_event_freezable_timeout() macros.
+
+After the system memory state has been restored from a hibernation image and
+devices have been reinitialized, the function thaw_processes() is called in
+order to clear the PF_FROZEN flag for each frozen task.  Then, the tasks that
+have been frozen leave __refrigerator() and continue running.
+
+
+Rationale behind the functions dealing with freezing and thawing of tasks
+-------------------------------------------------------------------------
+
+freeze_processes():
+  - freezes only userspace tasks
+
+freeze_kernel_threads():
+  - freezes all tasks (including kernel threads) because we can't freeze
+    kernel threads without freezing userspace tasks
+
+thaw_kernel_threads():
+  - thaws only kernel threads; this is particularly useful if we need to do
+    anything special in between thawing of kernel threads and thawing of
+    userspace tasks, or if we want to postpone the thawing of userspace tasks
+
+thaw_processes():
+  - thaws all tasks (including kernel threads) because we can't thaw userspace
+    tasks without thawing kernel threads
+
+
+III. Which kernel threads are freezable?
+========================================
+
+Kernel threads are not freezable by default.  However, a kernel thread may clear
+PF_NOFREEZE for itself by calling set_freezable() (the resetting of PF_NOFREEZE
+directly is not allowed).  From this point it is regarded as freezable
+and must call try_to_freeze() in a suitable place.
+
+IV. Why do we do that?
+======================
+
+Generally speaking, there is a couple of reasons to use the freezing of tasks:
+
+1. The principal reason is to prevent filesystems from being damaged after
+   hibernation.  At the moment we have no simple means of checkpointing
+   filesystems, so if there are any modifications made to filesystem data and/or
+   metadata on disks, we cannot bring them back to the state from before the
+   modifications.  At the same time each hibernation image contains some
+   filesystem-related information that must be consistent with the state of the
+   on-disk data and metadata after the system memory state has been restored
+   from the image (otherwise the filesystems will be damaged in a nasty way,
+   usually making them almost impossible to repair).  We therefore freeze
+   tasks that might cause the on-disk filesystems' data and metadata to be
+   modified after the hibernation image has been created and before the
+   system is finally powered off. The majority of these are user space
+   processes, but if any of the kernel threads may cause something like this
+   to happen, they have to be freezable.
+
+2. Next, to create the hibernation image we need to free a sufficient amount of
+   memory (approximately 50% of available RAM) and we need to do that before
+   devices are deactivated, because we generally need them for swapping out.
+   Then, after the memory for the image has been freed, we don't want tasks
+   to allocate additional memory and we prevent them from doing that by
+   freezing them earlier. [Of course, this also means that device drivers
+   should not allocate substantial amounts of memory from their .suspend()
+   callbacks before hibernation, but this is a separate issue.]
+
+3. The third reason is to prevent user space processes and some kernel threads
+   from interfering with the suspending and resuming of devices.  A user space
+   process running on a second CPU while we are suspending devices may, for
+   example, be troublesome and without the freezing of tasks we would need some
+   safeguards against race conditions that might occur in such a case.
+
+Although Linus Torvalds doesn't like the freezing of tasks, he said this in one
+of the discussions on LKML (http://lkml.org/lkml/2007/4/27/608):
+
+"RJW:> Why we freeze tasks at all or why we freeze kernel threads?
+
+Linus: In many ways, 'at all'.
+
+I **do** realize the IO request queue issues, and that we cannot actually do
+s2ram with some devices in the middle of a DMA.  So we want to be able to
+avoid *that*, there's no question about that.  And I suspect that stopping
+user threads and then waiting for a sync is practically one of the easier
+ways to do so.
+
+So in practice, the 'at all' may become a 'why freeze kernel threads?' and
+freezing user threads I don't find really objectionable."
+
+Still, there are kernel threads that may want to be freezable.  For example, if
+a kernel thread that belongs to a device driver accesses the device directly, it
+in principle needs to know when the device is suspended, so that it doesn't try
+to access it at that time.  However, if the kernel thread is freezable, it will
+be frozen before the driver's .suspend() callback is executed and it will be
+thawed after the driver's .resume() callback has run, so it won't be accessing
+the device while it's suspended.
+
+4. Another reason for freezing tasks is to prevent user space processes from
+   realizing that hibernation (or suspend) operation takes place.  Ideally, user
+   space processes should not notice that such a system-wide operation has
+   occurred and should continue running without any problems after the restore
+   (or resume from suspend).  Unfortunately, in the most general case this
+   is quite difficult to achieve without the freezing of tasks.  Consider,
+   for example, a process that depends on all CPUs being online while it's
+   running.  Since we need to disable nonboot CPUs during the hibernation,
+   if this process is not frozen, it may notice that the number of CPUs has
+   changed and may start to work incorrectly because of that.
+
+V. Are there any problems related to the freezing of tasks?
+===========================================================
+
+Yes, there are.
+
+First of all, the freezing of kernel threads may be tricky if they depend one
+on another.  For example, if kernel thread A waits for a completion (in the
+TASK_UNINTERRUPTIBLE state) that needs to be done by freezable kernel thread B
+and B is frozen in the meantime, then A will be blocked until B is thawed, which
+may be undesirable.  That's why kernel threads are not freezable by default.
+
+Second, there are the following two problems related to the freezing of user
+space processes:
+
+1. Putting processes into an uninterruptible sleep distorts the load average.
+2. Now that we have FUSE, plus the framework for doing device drivers in
+   userspace, it gets even more complicated because some userspace processes are
+   now doing the sorts of things that kernel threads do
+   (https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html).
+
+The problem 1. seems to be fixable, although it hasn't been fixed so far.  The
+other one is more serious, but it seems that we can work around it by using
+hibernation (and suspend) notifiers (in that case, though, we won't be able to
+avoid the realization by the user space processes that the hibernation is taking
+place).
+
+There are also problems that the freezing of tasks tends to expose, although
+they are not directly related to it.  For example, if request_firmware() is
+called from a device driver's .resume() routine, it will timeout and eventually
+fail, because the user land process that should respond to the request is frozen
+at this point.  So, seemingly, the failure is due to the freezing of tasks.
+Suppose, however, that the firmware file is located on a filesystem accessible
+only through another device that hasn't been resumed yet.  In that case,
+request_firmware() will fail regardless of whether or not the freezing of tasks
+is used.  Consequently, the problem is not really related to the freezing of
+tasks, since it generally exists anyway.
+
+A driver must have all firmwares it may need in RAM before suspend() is called.
+If keeping them is not practical, for example due to their size, they must be
+requested early enough using the suspend notifier API described in
+Documentation/driver-api/pm/notifiers.rst.
+
+VI. Are there any precautions to be taken to prevent freezing failures?
+=======================================================================
+
+Yes, there are.
+
+First of all, grabbing the 'system_transition_mutex' lock to mutually exclude a piece of code
+from system-wide sleep such as suspend/hibernation is not encouraged.
+If possible, that piece of code must instead hook onto the suspend/hibernation
+notifiers to achieve mutual exclusion. Look at the CPU-Hotplug code
+(kernel/cpu.c) for an example.
+
+However, if that is not feasible, and grabbing 'system_transition_mutex' is deemed necessary,
+it is strongly discouraged to directly call mutex_[un]lock(&system_transition_mutex) since
+that could lead to freezing failures, because if the suspend/hibernate code
+successfully acquired the 'system_transition_mutex' lock, and hence that other entity failed
+to acquire the lock, then that task would get blocked in TASK_UNINTERRUPTIBLE
+state. As a consequence, the freezer would not be able to freeze that task,
+leading to freezing failure.
+
+However, the [un]lock_system_sleep() APIs are safe to use in this scenario,
+since they ask the freezer to skip freezing this task, since it is anyway
+"frozen enough" as it is blocked on 'system_transition_mutex', which will be released
+only after the entire suspend/hibernation sequence is complete.
+So, to summarize, use [un]lock_system_sleep() instead of directly using
+mutex_[un]lock(&system_transition_mutex). That would prevent freezing failures.
+
+V. Miscellaneous
+================
+
+/sys/power/pm_freeze_timeout controls how long it will cost at most to freeze
+all user space processes or all freezable kernel threads, in unit of millisecond.
+The default value is 20000, with range of unsigned integer.
diff --git a/Documentation/power/freezing-of-tasks.txt b/Documentation/power/freezing-of-tasks.txt
deleted file mode 100644 (file)
index cd28319..0000000
+++ /dev/null
@@ -1,231 +0,0 @@
-Freezing of tasks
-       (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
-
-I. What is the freezing of tasks?
-
-The freezing of tasks is a mechanism by which user space processes and some
-kernel threads are controlled during hibernation or system-wide suspend (on some
-architectures).
-
-II. How does it work?
-
-There are three per-task flags used for that, PF_NOFREEZE, PF_FROZEN
-and PF_FREEZER_SKIP (the last one is auxiliary).  The tasks that have
-PF_NOFREEZE unset (all user space processes and some kernel threads) are
-regarded as 'freezable' and treated in a special way before the system enters a
-suspend state as well as before a hibernation image is created (in what follows
-we only consider hibernation, but the description also applies to suspend).
-
-Namely, as the first step of the hibernation procedure the function
-freeze_processes() (defined in kernel/power/process.c) is called.  A system-wide
-variable system_freezing_cnt (as opposed to a per-task flag) is used to indicate
-whether the system is to undergo a freezing operation. And freeze_processes()
-sets this variable.  After this, it executes try_to_freeze_tasks() that sends a
-fake signal to all user space processes, and wakes up all the kernel threads.
-All freezable tasks must react to that by calling try_to_freeze(), which
-results in a call to __refrigerator() (defined in kernel/freezer.c), which sets
-the task's PF_FROZEN flag, changes its state to TASK_UNINTERRUPTIBLE and makes
-it loop until PF_FROZEN is cleared for it. Then, we say that the task is
-'frozen' and therefore the set of functions handling this mechanism is referred
-to as 'the freezer' (these functions are defined in kernel/power/process.c,
-kernel/freezer.c & include/linux/freezer.h). User space processes are generally
-frozen before kernel threads.
-
-__refrigerator() must not be called directly.  Instead, use the
-try_to_freeze() function (defined in include/linux/freezer.h), that checks
-if the task is to be frozen and makes the task enter __refrigerator().
-
-For user space processes try_to_freeze() is called automatically from the
-signal-handling code, but the freezable kernel threads need to call it
-explicitly in suitable places or use the wait_event_freezable() or
-wait_event_freezable_timeout() macros (defined in include/linux/freezer.h)
-that combine interruptible sleep with checking if the task is to be frozen and
-calling try_to_freeze().  The main loop of a freezable kernel thread may look
-like the following one:
-
-       set_freezable();
-       do {
-               hub_events();
-               wait_event_freezable(khubd_wait,
-                               !list_empty(&hub_event_list) ||
-                               kthread_should_stop());
-       } while (!kthread_should_stop() || !list_empty(&hub_event_list));
-
-(from drivers/usb/core/hub.c::hub_thread()).
-
-If a freezable kernel thread fails to call try_to_freeze() after the freezer has
-initiated a freezing operation, the freezing of tasks will fail and the entire
-hibernation operation will be cancelled.  For this reason, freezable kernel
-threads must call try_to_freeze() somewhere or use one of the
-wait_event_freezable() and wait_event_freezable_timeout() macros.
-
-After the system memory state has been restored from a hibernation image and
-devices have been reinitialized, the function thaw_processes() is called in
-order to clear the PF_FROZEN flag for each frozen task.  Then, the tasks that
-have been frozen leave __refrigerator() and continue running.
-
-
-Rationale behind the functions dealing with freezing and thawing of tasks:
--------------------------------------------------------------------------
-
-freeze_processes():
-  - freezes only userspace tasks
-
-freeze_kernel_threads():
-  - freezes all tasks (including kernel threads) because we can't freeze
-    kernel threads without freezing userspace tasks
-
-thaw_kernel_threads():
-  - thaws only kernel threads; this is particularly useful if we need to do
-    anything special in between thawing of kernel threads and thawing of
-    userspace tasks, or if we want to postpone the thawing of userspace tasks
-
-thaw_processes():
-  - thaws all tasks (including kernel threads) because we can't thaw userspace
-    tasks without thawing kernel threads
-
-
-III. Which kernel threads are freezable?
-
-Kernel threads are not freezable by default.  However, a kernel thread may clear
-PF_NOFREEZE for itself by calling set_freezable() (the resetting of PF_NOFREEZE
-directly is not allowed).  From this point it is regarded as freezable
-and must call try_to_freeze() in a suitable place.
-
-IV. Why do we do that?
-
-Generally speaking, there is a couple of reasons to use the freezing of tasks:
-
-1. The principal reason is to prevent filesystems from being damaged after
-hibernation.  At the moment we have no simple means of checkpointing
-filesystems, so if there are any modifications made to filesystem data and/or
-metadata on disks, we cannot bring them back to the state from before the
-modifications.  At the same time each hibernation image contains some
-filesystem-related information that must be consistent with the state of the
-on-disk data and metadata after the system memory state has been restored from
-the image (otherwise the filesystems will be damaged in a nasty way, usually
-making them almost impossible to repair).  We therefore freeze tasks that might
-cause the on-disk filesystems' data and metadata to be modified after the
-hibernation image has been created and before the system is finally powered off.
-The majority of these are user space processes, but if any of the kernel threads
-may cause something like this to happen, they have to be freezable.
-
-2. Next, to create the hibernation image we need to free a sufficient amount of
-memory (approximately 50% of available RAM) and we need to do that before
-devices are deactivated, because we generally need them for swapping out.  Then,
-after the memory for the image has been freed, we don't want tasks to allocate
-additional memory and we prevent them from doing that by freezing them earlier.
-[Of course, this also means that device drivers should not allocate substantial
-amounts of memory from their .suspend() callbacks before hibernation, but this
-is a separate issue.]
-
-3. The third reason is to prevent user space processes and some kernel threads
-from interfering with the suspending and resuming of devices.  A user space
-process running on a second CPU while we are suspending devices may, for
-example, be troublesome and without the freezing of tasks we would need some
-safeguards against race conditions that might occur in such a case.
-
-Although Linus Torvalds doesn't like the freezing of tasks, he said this in one
-of the discussions on LKML (http://lkml.org/lkml/2007/4/27/608):
-
-"RJW:> Why we freeze tasks at all or why we freeze kernel threads?
-
-Linus: In many ways, 'at all'.
-
-I _do_ realize the IO request queue issues, and that we cannot actually do
-s2ram with some devices in the middle of a DMA.  So we want to be able to
-avoid *that*, there's no question about that.  And I suspect that stopping
-user threads and then waiting for a sync is practically one of the easier
-ways to do so.
-
-So in practice, the 'at all' may become a 'why freeze kernel threads?' and
-freezing user threads I don't find really objectionable."
-
-Still, there are kernel threads that may want to be freezable.  For example, if
-a kernel thread that belongs to a device driver accesses the device directly, it
-in principle needs to know when the device is suspended, so that it doesn't try
-to access it at that time.  However, if the kernel thread is freezable, it will
-be frozen before the driver's .suspend() callback is executed and it will be
-thawed after the driver's .resume() callback has run, so it won't be accessing
-the device while it's suspended.
-
-4. Another reason for freezing tasks is to prevent user space processes from
-realizing that hibernation (or suspend) operation takes place.  Ideally, user
-space processes should not notice that such a system-wide operation has occurred
-and should continue running without any problems after the restore (or resume
-from suspend).  Unfortunately, in the most general case this is quite difficult
-to achieve without the freezing of tasks.  Consider, for example, a process
-that depends on all CPUs being online while it's running.  Since we need to
-disable nonboot CPUs during the hibernation, if this process is not frozen, it
-may notice that the number of CPUs has changed and may start to work incorrectly
-because of that.
-
-V. Are there any problems related to the freezing of tasks?
-
-Yes, there are.
-
-First of all, the freezing of kernel threads may be tricky if they depend one
-on another.  For example, if kernel thread A waits for a completion (in the
-TASK_UNINTERRUPTIBLE state) that needs to be done by freezable kernel thread B
-and B is frozen in the meantime, then A will be blocked until B is thawed, which
-may be undesirable.  That's why kernel threads are not freezable by default.
-
-Second, there are the following two problems related to the freezing of user
-space processes:
-1. Putting processes into an uninterruptible sleep distorts the load average.
-2. Now that we have FUSE, plus the framework for doing device drivers in
-userspace, it gets even more complicated because some userspace processes are
-now doing the sorts of things that kernel threads do
-(https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html).
-
-The problem 1. seems to be fixable, although it hasn't been fixed so far.  The
-other one is more serious, but it seems that we can work around it by using
-hibernation (and suspend) notifiers (in that case, though, we won't be able to
-avoid the realization by the user space processes that the hibernation is taking
-place).
-
-There are also problems that the freezing of tasks tends to expose, although
-they are not directly related to it.  For example, if request_firmware() is
-called from a device driver's .resume() routine, it will timeout and eventually
-fail, because the user land process that should respond to the request is frozen
-at this point.  So, seemingly, the failure is due to the freezing of tasks.
-Suppose, however, that the firmware file is located on a filesystem accessible
-only through another device that hasn't been resumed yet.  In that case,
-request_firmware() will fail regardless of whether or not the freezing of tasks
-is used.  Consequently, the problem is not really related to the freezing of
-tasks, since it generally exists anyway.
-
-A driver must have all firmwares it may need in RAM before suspend() is called.
-If keeping them is not practical, for example due to their size, they must be
-requested early enough using the suspend notifier API described in
-Documentation/driver-api/pm/notifiers.rst.
-
-VI. Are there any precautions to be taken to prevent freezing failures?
-
-Yes, there are.
-
-First of all, grabbing the 'system_transition_mutex' lock to mutually exclude a piece of code
-from system-wide sleep such as suspend/hibernation is not encouraged.
-If possible, that piece of code must instead hook onto the suspend/hibernation
-notifiers to achieve mutual exclusion. Look at the CPU-Hotplug code
-(kernel/cpu.c) for an example.
-
-However, if that is not feasible, and grabbing 'system_transition_mutex' is deemed necessary,
-it is strongly discouraged to directly call mutex_[un]lock(&system_transition_mutex) since
-that could lead to freezing failures, because if the suspend/hibernate code
-successfully acquired the 'system_transition_mutex' lock, and hence that other entity failed
-to acquire the lock, then that task would get blocked in TASK_UNINTERRUPTIBLE
-state. As a consequence, the freezer would not be able to freeze that task,
-leading to freezing failure.
-
-However, the [un]lock_system_sleep() APIs are safe to use in this scenario,
-since they ask the freezer to skip freezing this task, since it is anyway
-"frozen enough" as it is blocked on 'system_transition_mutex', which will be released
-only after the entire suspend/hibernation sequence is complete.
-So, to summarize, use [un]lock_system_sleep() instead of directly using
-mutex_[un]lock(&system_transition_mutex). That would prevent freezing failures.
-
-V. Miscellaneous
-/sys/power/pm_freeze_timeout controls how long it will cost at most to freeze
-all user space processes or all freezable kernel threads, in unit of millisecond.
-The default value is 20000, with range of unsigned integer.
diff --git a/Documentation/power/index.rst b/Documentation/power/index.rst
new file mode 100644 (file)
index 0000000..20415f2
--- /dev/null
@@ -0,0 +1,46 @@
+:orphan:
+
+================
+Power Management
+================
+
+.. toctree::
+    :maxdepth: 1
+
+    apm-acpi
+    basic-pm-debugging
+    charger-manager
+    drivers-testing
+    energy-model
+    freezing-of-tasks
+    interface
+    opp
+    pci
+    pm_qos_interface
+    power_supply_class
+    runtime_pm
+    s2ram
+    suspend-and-cpuhotplug
+    suspend-and-interrupts
+    swsusp-and-swap-files
+    swsusp-dmcrypt
+    swsusp
+    video
+    tricks
+
+    userland-swsusp
+
+    powercap/powercap
+
+    regulator/consumer
+    regulator/design
+    regulator/machine
+    regulator/overview
+    regulator/regulator
+
+.. only::  subproject and html
+
+   Indices
+   =======
+
+   * :ref:`genindex`
diff --git a/Documentation/power/interface.rst b/Documentation/power/interface.rst
new file mode 100644 (file)
index 0000000..8d270ed
--- /dev/null
@@ -0,0 +1,79 @@
+===========================================
+Power Management Interface for System Sleep
+===========================================
+
+Copyright (c) 2016 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+
+The power management subsystem provides userspace with a unified sysfs interface
+for system sleep regardless of the underlying system architecture or platform.
+The interface is located in the /sys/power/ directory (assuming that sysfs is
+mounted at /sys).
+
+/sys/power/state is the system sleep state control file.
+
+Reading from it returns a list of supported sleep states, encoded as:
+
+- 'freeze' (Suspend-to-Idle)
+- 'standby' (Power-On Suspend)
+- 'mem' (Suspend-to-RAM)
+- 'disk' (Suspend-to-Disk)
+
+Suspend-to-Idle is always supported.  Suspend-to-Disk is always supported
+too as long the kernel has been configured to support hibernation at all
+(ie. CONFIG_HIBERNATION is set in the kernel configuration file).  Support
+for Suspend-to-RAM and Power-On Suspend depends on the capabilities of the
+platform.
+
+If one of the strings listed in /sys/power/state is written to it, the system
+will attempt to transition into the corresponding sleep state.  Refer to
+Documentation/admin-guide/pm/sleep-states.rst for a description of each of
+those states.
+
+/sys/power/disk controls the operating mode of hibernation (Suspend-to-Disk).
+Specifically, it tells the kernel what to do after creating a hibernation image.
+
+Reading from it returns a list of supported options encoded as:
+
+- 'platform' (put the system into sleep using a platform-provided method)
+- 'shutdown' (shut the system down)
+- 'reboot' (reboot the system)
+- 'suspend' (trigger a Suspend-to-RAM transition)
+- 'test_resume' (resume-after-hibernation test mode)
+
+The currently selected option is printed in square brackets.
+
+The 'platform' option is only available if the platform provides a special
+mechanism to put the system to sleep after creating a hibernation image (ACPI
+does that, for example).  The 'suspend' option is available if Suspend-to-RAM
+is supported.  Refer to Documentation/power/basic-pm-debugging.rst for the
+description of the 'test_resume' option.
+
+To select an option, write the string representing it to /sys/power/disk.
+
+/sys/power/image_size controls the size of hibernation images.
+
+It can be written a string representing a non-negative integer that will be
+used as a best-effort upper limit of the image size, in bytes.  The hibernation
+core will do its best to ensure that the image size will not exceed that number.
+However, if that turns out to be impossible to achieve, a hibernation image will
+still be created and its size will be as small as possible.  In particular,
+writing '0' to this file will enforce hibernation images to be as small as
+possible.
+
+Reading from this file returns the current image size limit, which is set to
+around 2/5 of available RAM by default.
+
+/sys/power/pm_trace controls the PM trace mechanism saving the last suspend
+or resume event point in the RTC across reboots.
+
+It helps to debug hard lockups or reboots due to device driver failures that
+occur during system suspend or resume (which is more common) more effectively.
+
+If /sys/power/pm_trace contains '1', the fingerprint of each suspend/resume
+event point in turn will be stored in the RTC memory (overwriting the actual
+RTC information), so it will survive a system crash if one occurs right after
+storing it and it can be used later to identify the driver that caused the crash
+to happen (see Documentation/power/s2ram.rst for more information).
+
+Initially it contains '0' which may be changed to '1' by writing a string
+representing a nonzero integer into it.
diff --git a/Documentation/power/interface.txt b/Documentation/power/interface.txt
deleted file mode 100644 (file)
index 27df7f9..0000000
+++ /dev/null
@@ -1,77 +0,0 @@
-Power Management Interface for System Sleep
-
-Copyright (c) 2016 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
-
-The power management subsystem provides userspace with a unified sysfs interface
-for system sleep regardless of the underlying system architecture or platform.
-The interface is located in the /sys/power/ directory (assuming that sysfs is
-mounted at /sys).
-
-/sys/power/state is the system sleep state control file.
-
-Reading from it returns a list of supported sleep states, encoded as:
-
-'freeze' (Suspend-to-Idle)
-'standby' (Power-On Suspend)
-'mem' (Suspend-to-RAM)
-'disk' (Suspend-to-Disk)
-
-Suspend-to-Idle is always supported.  Suspend-to-Disk is always supported
-too as long the kernel has been configured to support hibernation at all
-(ie. CONFIG_HIBERNATION is set in the kernel configuration file).  Support
-for Suspend-to-RAM and Power-On Suspend depends on the capabilities of the
-platform.
-
-If one of the strings listed in /sys/power/state is written to it, the system
-will attempt to transition into the corresponding sleep state.  Refer to
-Documentation/admin-guide/pm/sleep-states.rst for a description of each of
-those states.
-
-/sys/power/disk controls the operating mode of hibernation (Suspend-to-Disk).
-Specifically, it tells the kernel what to do after creating a hibernation image.
-
-Reading from it returns a list of supported options encoded as:
-
-'platform' (put the system into sleep using a platform-provided method)
-'shutdown' (shut the system down)
-'reboot' (reboot the system)
-'suspend' (trigger a Suspend-to-RAM transition)
-'test_resume' (resume-after-hibernation test mode)
-
-The currently selected option is printed in square brackets.
-
-The 'platform' option is only available if the platform provides a special
-mechanism to put the system to sleep after creating a hibernation image (ACPI
-does that, for example).  The 'suspend' option is available if Suspend-to-RAM
-is supported.  Refer to Documentation/power/basic-pm-debugging.txt for the
-description of the 'test_resume' option.
-
-To select an option, write the string representing it to /sys/power/disk.
-
-/sys/power/image_size controls the size of hibernation images.
-
-It can be written a string representing a non-negative integer that will be
-used as a best-effort upper limit of the image size, in bytes.  The hibernation
-core will do its best to ensure that the image size will not exceed that number.
-However, if that turns out to be impossible to achieve, a hibernation image will
-still be created and its size will be as small as possible.  In particular,
-writing '0' to this file will enforce hibernation images to be as small as
-possible.
-
-Reading from this file returns the current image size limit, which is set to
-around 2/5 of available RAM by default.
-
-/sys/power/pm_trace controls the PM trace mechanism saving the last suspend
-or resume event point in the RTC across reboots.
-
-It helps to debug hard lockups or reboots due to device driver failures that
-occur during system suspend or resume (which is more common) more effectively.
-
-If /sys/power/pm_trace contains '1', the fingerprint of each suspend/resume
-event point in turn will be stored in the RTC memory (overwriting the actual
-RTC information), so it will survive a system crash if one occurs right after
-storing it and it can be used later to identify the driver that caused the crash
-to happen (see Documentation/power/s2ram.txt for more information).
-
-Initially it contains '0' which may be changed to '1' by writing a string
-representing a nonzero integer into it.
diff --git a/Documentation/power/opp.rst b/Documentation/power/opp.rst
new file mode 100644 (file)
index 0000000..b3cf1de
--- /dev/null
@@ -0,0 +1,379 @@
+==========================================
+Operating Performance Points (OPP) Library
+==========================================
+
+(C) 2009-2010 Nishanth Menon <nm@ti.com>, Texas Instruments Incorporated
+
+.. Contents
+
+  1. Introduction
+  2. Initial OPP List Registration
+  3. OPP Search Functions
+  4. OPP Availability Control Functions
+  5. OPP Data Retrieval Functions
+  6. Data Structures
+
+1. Introduction
+===============
+
+1.1 What is an Operating Performance Point (OPP)?
+-------------------------------------------------
+
+Complex SoCs of today consists of a multiple sub-modules working in conjunction.
+In an operational system executing varied use cases, not all modules in the SoC
+need to function at their highest performing frequency all the time. To
+facilitate this, sub-modules in a SoC are grouped into domains, allowing some
+domains to run at lower voltage and frequency while other domains run at
+voltage/frequency pairs that are higher.
+
+The set of discrete tuples consisting of frequency and voltage pairs that
+the device will support per domain are called Operating Performance Points or
+OPPs.
+
+As an example:
+
+Let us consider an MPU device which supports the following:
+{300MHz at minimum voltage of 1V}, {800MHz at minimum voltage of 1.2V},
+{1GHz at minimum voltage of 1.3V}
+
+We can represent these as three OPPs as the following {Hz, uV} tuples:
+
+- {300000000, 1000000}
+- {800000000, 1200000}
+- {1000000000, 1300000}
+
+1.2 Operating Performance Points Library
+----------------------------------------
+
+OPP library provides a set of helper functions to organize and query the OPP
+information. The library is located in drivers/base/power/opp.c and the header
+is located in include/linux/pm_opp.h. OPP library can be enabled by enabling
+CONFIG_PM_OPP from power management menuconfig menu. OPP library depends on
+CONFIG_PM as certain SoCs such as Texas Instrument's OMAP framework allows to
+optionally boot at a certain OPP without needing cpufreq.
+
+Typical usage of the OPP library is as follows::
+
+ (users)       -> registers a set of default OPPs              -> (library)
+ SoC framework -> modifies on required cases certain OPPs      -> OPP layer
+               -> queries to search/retrieve information       ->
+
+OPP layer expects each domain to be represented by a unique device pointer. SoC
+framework registers a set of initial OPPs per device with the OPP layer. This
+list is expected to be an optimally small number typically around 5 per device.
+This initial list contains a set of OPPs that the framework expects to be safely
+enabled by default in the system.
+
+Note on OPP Availability
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+As the system proceeds to operate, SoC framework may choose to make certain
+OPPs available or not available on each device based on various external
+factors. Example usage: Thermal management or other exceptional situations where
+SoC framework might choose to disable a higher frequency OPP to safely continue
+operations until that OPP could be re-enabled if possible.
+
+OPP library facilitates this concept in it's implementation. The following
+operational functions operate only on available opps:
+opp_find_freq_{ceil, floor}, dev_pm_opp_get_voltage, dev_pm_opp_get_freq, dev_pm_opp_get_opp_count
+
+dev_pm_opp_find_freq_exact is meant to be used to find the opp pointer which can then
+be used for dev_pm_opp_enable/disable functions to make an opp available as required.
+
+WARNING: Users of OPP library should refresh their availability count using
+get_opp_count if dev_pm_opp_enable/disable functions are invoked for a device, the
+exact mechanism to trigger these or the notification mechanism to other
+dependent subsystems such as cpufreq are left to the discretion of the SoC
+specific framework which uses the OPP library. Similar care needs to be taken
+care to refresh the cpufreq table in cases of these operations.
+
+2. Initial OPP List Registration
+================================
+The SoC implementation calls dev_pm_opp_add function iteratively to add OPPs per
+device. It is expected that the SoC framework will register the OPP entries
+optimally- typical numbers range to be less than 5. The list generated by
+registering the OPPs is maintained by OPP library throughout the device
+operation. The SoC framework can subsequently control the availability of the
+OPPs dynamically using the dev_pm_opp_enable / disable functions.
+
+dev_pm_opp_add
+       Add a new OPP for a specific domain represented by the device pointer.
+       The OPP is defined using the frequency and voltage. Once added, the OPP
+       is assumed to be available and control of it's availability can be done
+       with the dev_pm_opp_enable/disable functions. OPP library internally stores
+       and manages this information in the opp struct. This function may be
+       used by SoC framework to define a optimal list as per the demands of
+       SoC usage environment.
+
+       WARNING:
+               Do not use this function in interrupt context.
+
+       Example::
+
+        soc_pm_init()
+        {
+               /* Do things */
+               r = dev_pm_opp_add(mpu_dev, 1000000, 900000);
+               if (!r) {
+                       pr_err("%s: unable to register mpu opp(%d)\n", r);
+                       goto no_cpufreq;
+               }
+               /* Do cpufreq things */
+        no_cpufreq:
+               /* Do remaining things */
+        }
+
+3. OPP Search Functions
+=======================
+High level framework such as cpufreq operates on frequencies. To map the
+frequency back to the corresponding OPP, OPP library provides handy functions
+to search the OPP list that OPP library internally manages. These search
+functions return the matching pointer representing the opp if a match is
+found, else returns error. These errors are expected to be handled by standard
+error checks such as IS_ERR() and appropriate actions taken by the caller.
+
+Callers of these functions shall call dev_pm_opp_put() after they have used the
+OPP. Otherwise the memory for the OPP will never get freed and result in
+memleak.
+
+dev_pm_opp_find_freq_exact
+       Search for an OPP based on an *exact* frequency and
+       availability. This function is especially useful to enable an OPP which
+       is not available by default.
+       Example: In a case when SoC framework detects a situation where a
+       higher frequency could be made available, it can use this function to
+       find the OPP prior to call the dev_pm_opp_enable to actually make
+       it available::
+
+        opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
+        dev_pm_opp_put(opp);
+        /* dont operate on the pointer.. just do a sanity check.. */
+        if (IS_ERR(opp)) {
+               pr_err("frequency not disabled!\n");
+               /* trigger appropriate actions.. */
+        } else {
+               dev_pm_opp_enable(dev,1000000000);
+        }
+
+       NOTE:
+         This is the only search function that operates on OPPs which are
+         not available.
+
+dev_pm_opp_find_freq_floor
+       Search for an available OPP which is *at most* the
+       provided frequency. This function is useful while searching for a lesser
+       match OR operating on OPP information in the order of decreasing
+       frequency.
+       Example: To find the highest opp for a device::
+
+        freq = ULONG_MAX;
+        opp = dev_pm_opp_find_freq_floor(dev, &freq);
+        dev_pm_opp_put(opp);
+
+dev_pm_opp_find_freq_ceil
+       Search for an available OPP which is *at least* the
+       provided frequency. This function is useful while searching for a
+       higher match OR operating on OPP information in the order of increasing
+       frequency.
+       Example 1: To find the lowest opp for a device::
+
+        freq = 0;
+        opp = dev_pm_opp_find_freq_ceil(dev, &freq);
+        dev_pm_opp_put(opp);
+
+       Example 2: A simplified implementation of a SoC cpufreq_driver->target::
+
+        soc_cpufreq_target(..)
+        {
+               /* Do stuff like policy checks etc. */
+               /* Find the best frequency match for the req */
+               opp = dev_pm_opp_find_freq_ceil(dev, &freq);
+               dev_pm_opp_put(opp);
+               if (!IS_ERR(opp))
+                       soc_switch_to_freq_voltage(freq);
+               else
+                       /* do something when we can't satisfy the req */
+               /* do other stuff */
+        }
+
+4. OPP Availability Control Functions
+=====================================
+A default OPP list registered with the OPP library may not cater to all possible
+situation. The OPP library provides a set of functions to modify the
+availability of a OPP within the OPP list. This allows SoC frameworks to have
+fine grained dynamic control of which sets of OPPs are operationally available.
+These functions are intended to *temporarily* remove an OPP in conditions such
+as thermal considerations (e.g. don't use OPPx until the temperature drops).
+
+WARNING:
+       Do not use these functions in interrupt context.
+
+dev_pm_opp_enable
+       Make a OPP available for operation.
+       Example: Lets say that 1GHz OPP is to be made available only if the
+       SoC temperature is lower than a certain threshold. The SoC framework
+       implementation might choose to do something as follows::
+
+        if (cur_temp < temp_low_thresh) {
+               /* Enable 1GHz if it was disabled */
+               opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
+               dev_pm_opp_put(opp);
+               /* just error check */
+               if (!IS_ERR(opp))
+                       ret = dev_pm_opp_enable(dev, 1000000000);
+               else
+                       goto try_something_else;
+        }
+
+dev_pm_opp_disable
+       Make an OPP to be not available for operation
+       Example: Lets say that 1GHz OPP is to be disabled if the temperature
+       exceeds a threshold value. The SoC framework implementation might
+       choose to do something as follows::
+
+        if (cur_temp > temp_high_thresh) {
+               /* Disable 1GHz if it was enabled */
+               opp = dev_pm_opp_find_freq_exact(dev, 1000000000, true);
+               dev_pm_opp_put(opp);
+               /* just error check */
+               if (!IS_ERR(opp))
+                       ret = dev_pm_opp_disable(dev, 1000000000);
+               else
+                       goto try_something_else;
+        }
+
+5. OPP Data Retrieval Functions
+===============================
+Since OPP library abstracts away the OPP information, a set of functions to pull
+information from the OPP structure is necessary. Once an OPP pointer is
+retrieved using the search functions, the following functions can be used by SoC
+framework to retrieve the information represented inside the OPP layer.
+
+dev_pm_opp_get_voltage
+       Retrieve the voltage represented by the opp pointer.
+       Example: At a cpufreq transition to a different frequency, SoC
+       framework requires to set the voltage represented by the OPP using
+       the regulator framework to the Power Management chip providing the
+       voltage::
+
+        soc_switch_to_freq_voltage(freq)
+        {
+               /* do things */
+               opp = dev_pm_opp_find_freq_ceil(dev, &freq);
+               v = dev_pm_opp_get_voltage(opp);
+               dev_pm_opp_put(opp);
+               if (v)
+                       regulator_set_voltage(.., v);
+               /* do other things */
+        }
+
+dev_pm_opp_get_freq
+       Retrieve the freq represented by the opp pointer.
+       Example: Lets say the SoC framework uses a couple of helper functions
+       we could pass opp pointers instead of doing additional parameters to
+       handle quiet a bit of data parameters::
+
+        soc_cpufreq_target(..)
+        {
+               /* do things.. */
+                max_freq = ULONG_MAX;
+                max_opp = dev_pm_opp_find_freq_floor(dev,&max_freq);
+                requested_opp = dev_pm_opp_find_freq_ceil(dev,&freq);
+                if (!IS_ERR(max_opp) && !IS_ERR(requested_opp))
+                       r = soc_test_validity(max_opp, requested_opp);
+                dev_pm_opp_put(max_opp);
+                dev_pm_opp_put(requested_opp);
+               /* do other things */
+        }
+        soc_test_validity(..)
+        {
+                if(dev_pm_opp_get_voltage(max_opp) < dev_pm_opp_get_voltage(requested_opp))
+                        return -EINVAL;
+                if(dev_pm_opp_get_freq(max_opp) < dev_pm_opp_get_freq(requested_opp))
+                        return -EINVAL;
+               /* do things.. */
+        }
+
+dev_pm_opp_get_opp_count
+       Retrieve the number of available opps for a device
+       Example: Lets say a co-processor in the SoC needs to know the available
+       frequencies in a table, the main processor can notify as following::
+
+        soc_notify_coproc_available_frequencies()
+        {
+               /* Do things */
+               num_available = dev_pm_opp_get_opp_count(dev);
+               speeds = kzalloc(sizeof(u32) * num_available, GFP_KERNEL);
+               /* populate the table in increasing order */
+               freq = 0;
+               while (!IS_ERR(opp = dev_pm_opp_find_freq_ceil(dev, &freq))) {
+                       speeds[i] = freq;
+                       freq++;
+                       i++;
+                       dev_pm_opp_put(opp);
+               }
+
+               soc_notify_coproc(AVAILABLE_FREQs, speeds, num_available);
+               /* Do other things */
+        }
+
+6. Data Structures
+==================
+Typically an SoC contains multiple voltage domains which are variable. Each
+domain is represented by a device pointer. The relationship to OPP can be
+represented as follows::
+
+  SoC
+   |- device 1
+   |   |- opp 1 (availability, freq, voltage)
+   |   |- opp 2 ..
+   ... ...
+   |   `- opp n ..
+   |- device 2
+   ...
+   `- device m
+
+OPP library maintains a internal list that the SoC framework populates and
+accessed by various functions as described above. However, the structures
+representing the actual OPPs and domains are internal to the OPP library itself
+to allow for suitable abstraction reusable across systems.
+
+struct dev_pm_opp
+       The internal data structure of OPP library which is used to
+       represent an OPP. In addition to the freq, voltage, availability
+       information, it also contains internal book keeping information required
+       for the OPP library to operate on.  Pointer to this structure is
+       provided back to the users such as SoC framework to be used as a
+       identifier for OPP in the interactions with OPP layer.
+
+       WARNING:
+         The struct dev_pm_opp pointer should not be parsed or modified by the
+         users. The defaults of for an instance is populated by
+         dev_pm_opp_add, but the availability of the OPP can be modified
+         by dev_pm_opp_enable/disable functions.
+
+struct device
+       This is used to identify a domain to the OPP layer. The
+       nature of the device and it's implementation is left to the user of
+       OPP library such as the SoC framework.
+
+Overall, in a simplistic view, the data structure operations is represented as
+following::
+
+  Initialization / modification:
+              +-----+        /- dev_pm_opp_enable
+  dev_pm_opp_add --> | opp | <-------
+    |         +-----+        \- dev_pm_opp_disable
+    \-------> domain_info(device)
+
+  Search functions:
+               /-- dev_pm_opp_find_freq_ceil  ---\   +-----+
+  domain_info<---- dev_pm_opp_find_freq_exact -----> | opp |
+               \-- dev_pm_opp_find_freq_floor ---/   +-----+
+
+  Retrieval functions:
+  +-----+     /- dev_pm_opp_get_voltage
+  | opp | <---
+  +-----+     \- dev_pm_opp_get_freq
+
+  domain_info <- dev_pm_opp_get_opp_count
diff --git a/Documentation/power/opp.txt b/Documentation/power/opp.txt
deleted file mode 100644 (file)
index 0c007e2..0000000
+++ /dev/null
@@ -1,342 +0,0 @@
-Operating Performance Points (OPP) Library
-==========================================
-
-(C) 2009-2010 Nishanth Menon <nm@ti.com>, Texas Instruments Incorporated
-
-Contents
---------
-1. Introduction
-2. Initial OPP List Registration
-3. OPP Search Functions
-4. OPP Availability Control Functions
-5. OPP Data Retrieval Functions
-6. Data Structures
-
-1. Introduction
-===============
-1.1 What is an Operating Performance Point (OPP)?
-
-Complex SoCs of today consists of a multiple sub-modules working in conjunction.
-In an operational system executing varied use cases, not all modules in the SoC
-need to function at their highest performing frequency all the time. To
-facilitate this, sub-modules in a SoC are grouped into domains, allowing some
-domains to run at lower voltage and frequency while other domains run at
-voltage/frequency pairs that are higher.
-
-The set of discrete tuples consisting of frequency and voltage pairs that
-the device will support per domain are called Operating Performance Points or
-OPPs.
-
-As an example:
-Let us consider an MPU device which supports the following:
-{300MHz at minimum voltage of 1V}, {800MHz at minimum voltage of 1.2V},
-{1GHz at minimum voltage of 1.3V}
-
-We can represent these as three OPPs as the following {Hz, uV} tuples:
-{300000000, 1000000}
-{800000000, 1200000}
-{1000000000, 1300000}
-
-1.2 Operating Performance Points Library
-
-OPP library provides a set of helper functions to organize and query the OPP
-information. The library is located in drivers/base/power/opp.c and the header
-is located in include/linux/pm_opp.h. OPP library can be enabled by enabling
-CONFIG_PM_OPP from power management menuconfig menu. OPP library depends on
-CONFIG_PM as certain SoCs such as Texas Instrument's OMAP framework allows to
-optionally boot at a certain OPP without needing cpufreq.
-
-Typical usage of the OPP library is as follows:
-(users)                -> registers a set of default OPPs              -> (library)
-SoC framework  -> modifies on required cases certain OPPs      -> OPP layer
-               -> queries to search/retrieve information       ->
-
-OPP layer expects each domain to be represented by a unique device pointer. SoC
-framework registers a set of initial OPPs per device with the OPP layer. This
-list is expected to be an optimally small number typically around 5 per device.
-This initial list contains a set of OPPs that the framework expects to be safely
-enabled by default in the system.
-
-Note on OPP Availability:
-------------------------
-As the system proceeds to operate, SoC framework may choose to make certain
-OPPs available or not available on each device based on various external
-factors. Example usage: Thermal management or other exceptional situations where
-SoC framework might choose to disable a higher frequency OPP to safely continue
-operations until that OPP could be re-enabled if possible.
-
-OPP library facilitates this concept in it's implementation. The following
-operational functions operate only on available opps:
-opp_find_freq_{ceil, floor}, dev_pm_opp_get_voltage, dev_pm_opp_get_freq, dev_pm_opp_get_opp_count
-
-dev_pm_opp_find_freq_exact is meant to be used to find the opp pointer which can then
-be used for dev_pm_opp_enable/disable functions to make an opp available as required.
-
-WARNING: Users of OPP library should refresh their availability count using
-get_opp_count if dev_pm_opp_enable/disable functions are invoked for a device, the
-exact mechanism to trigger these or the notification mechanism to other
-dependent subsystems such as cpufreq are left to the discretion of the SoC
-specific framework which uses the OPP library. Similar care needs to be taken
-care to refresh the cpufreq table in cases of these operations.
-
-2. Initial OPP List Registration
-================================
-The SoC implementation calls dev_pm_opp_add function iteratively to add OPPs per
-device. It is expected that the SoC framework will register the OPP entries
-optimally- typical numbers range to be less than 5. The list generated by
-registering the OPPs is maintained by OPP library throughout the device
-operation. The SoC framework can subsequently control the availability of the
-OPPs dynamically using the dev_pm_opp_enable / disable functions.
-
-dev_pm_opp_add - Add a new OPP for a specific domain represented by the device pointer.
-       The OPP is defined using the frequency and voltage. Once added, the OPP
-       is assumed to be available and control of it's availability can be done
-       with the dev_pm_opp_enable/disable functions. OPP library internally stores
-       and manages this information in the opp struct. This function may be
-       used by SoC framework to define a optimal list as per the demands of
-       SoC usage environment.
-
-       WARNING: Do not use this function in interrupt context.
-
-       Example:
-        soc_pm_init()
-        {
-               /* Do things */
-               r = dev_pm_opp_add(mpu_dev, 1000000, 900000);
-               if (!r) {
-                       pr_err("%s: unable to register mpu opp(%d)\n", r);
-                       goto no_cpufreq;
-               }
-               /* Do cpufreq things */
-        no_cpufreq:
-               /* Do remaining things */
-        }
-
-3. OPP Search Functions
-=======================
-High level framework such as cpufreq operates on frequencies. To map the
-frequency back to the corresponding OPP, OPP library provides handy functions
-to search the OPP list that OPP library internally manages. These search
-functions return the matching pointer representing the opp if a match is
-found, else returns error. These errors are expected to be handled by standard
-error checks such as IS_ERR() and appropriate actions taken by the caller.
-
-Callers of these functions shall call dev_pm_opp_put() after they have used the
-OPP. Otherwise the memory for the OPP will never get freed and result in
-memleak.
-
-dev_pm_opp_find_freq_exact - Search for an OPP based on an *exact* frequency and
-       availability. This function is especially useful to enable an OPP which
-       is not available by default.
-       Example: In a case when SoC framework detects a situation where a
-       higher frequency could be made available, it can use this function to
-       find the OPP prior to call the dev_pm_opp_enable to actually make it available.
-        opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
-        dev_pm_opp_put(opp);
-        /* dont operate on the pointer.. just do a sanity check.. */
-        if (IS_ERR(opp)) {
-               pr_err("frequency not disabled!\n");
-               /* trigger appropriate actions.. */
-        } else {
-               dev_pm_opp_enable(dev,1000000000);
-        }
-
-       NOTE: This is the only search function that operates on OPPs which are
-       not available.
-
-dev_pm_opp_find_freq_floor - Search for an available OPP which is *at most* the
-       provided frequency. This function is useful while searching for a lesser
-       match OR operating on OPP information in the order of decreasing
-       frequency.
-       Example: To find the highest opp for a device:
-        freq = ULONG_MAX;
-        opp = dev_pm_opp_find_freq_floor(dev, &freq);
-        dev_pm_opp_put(opp);
-
-dev_pm_opp_find_freq_ceil - Search for an available OPP which is *at least* the
-       provided frequency. This function is useful while searching for a
-       higher match OR operating on OPP information in the order of increasing
-       frequency.
-       Example 1: To find the lowest opp for a device:
-        freq = 0;
-        opp = dev_pm_opp_find_freq_ceil(dev, &freq);
-        dev_pm_opp_put(opp);
-       Example 2: A simplified implementation of a SoC cpufreq_driver->target:
-        soc_cpufreq_target(..)
-        {
-               /* Do stuff like policy checks etc. */
-               /* Find the best frequency match for the req */
-               opp = dev_pm_opp_find_freq_ceil(dev, &freq);
-               dev_pm_opp_put(opp);
-               if (!IS_ERR(opp))
-                       soc_switch_to_freq_voltage(freq);
-               else
-                       /* do something when we can't satisfy the req */
-               /* do other stuff */
-        }
-
-4. OPP Availability Control Functions
-=====================================
-A default OPP list registered with the OPP library may not cater to all possible
-situation. The OPP library provides a set of functions to modify the
-availability of a OPP within the OPP list. This allows SoC frameworks to have
-fine grained dynamic control of which sets of OPPs are operationally available.
-These functions are intended to *temporarily* remove an OPP in conditions such
-as thermal considerations (e.g. don't use OPPx until the temperature drops).
-
-WARNING: Do not use these functions in interrupt context.
-
-dev_pm_opp_enable - Make a OPP available for operation.
-       Example: Lets say that 1GHz OPP is to be made available only if the
-       SoC temperature is lower than a certain threshold. The SoC framework
-       implementation might choose to do something as follows:
-        if (cur_temp < temp_low_thresh) {
-               /* Enable 1GHz if it was disabled */
-               opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
-               dev_pm_opp_put(opp);
-               /* just error check */
-               if (!IS_ERR(opp))
-                       ret = dev_pm_opp_enable(dev, 1000000000);
-               else
-                       goto try_something_else;
-        }
-
-dev_pm_opp_disable - Make an OPP to be not available for operation
-       Example: Lets say that 1GHz OPP is to be disabled if the temperature
-       exceeds a threshold value. The SoC framework implementation might
-       choose to do something as follows:
-        if (cur_temp > temp_high_thresh) {
-               /* Disable 1GHz if it was enabled */
-               opp = dev_pm_opp_find_freq_exact(dev, 1000000000, true);
-               dev_pm_opp_put(opp);
-               /* just error check */
-               if (!IS_ERR(opp))
-                       ret = dev_pm_opp_disable(dev, 1000000000);
-               else
-                       goto try_something_else;
-        }
-
-5. OPP Data Retrieval Functions
-===============================
-Since OPP library abstracts away the OPP information, a set of functions to pull
-information from the OPP structure is necessary. Once an OPP pointer is
-retrieved using the search functions, the following functions can be used by SoC
-framework to retrieve the information represented inside the OPP layer.
-
-dev_pm_opp_get_voltage - Retrieve the voltage represented by the opp pointer.
-       Example: At a cpufreq transition to a different frequency, SoC
-       framework requires to set the voltage represented by the OPP using
-       the regulator framework to the Power Management chip providing the
-       voltage.
-        soc_switch_to_freq_voltage(freq)
-        {
-               /* do things */
-               opp = dev_pm_opp_find_freq_ceil(dev, &freq);
-               v = dev_pm_opp_get_voltage(opp);
-               dev_pm_opp_put(opp);
-               if (v)
-                       regulator_set_voltage(.., v);
-               /* do other things */
-        }
-
-dev_pm_opp_get_freq - Retrieve the freq represented by the opp pointer.
-       Example: Lets say the SoC framework uses a couple of helper functions
-       we could pass opp pointers instead of doing additional parameters to
-       handle quiet a bit of data parameters.
-        soc_cpufreq_target(..)
-        {
-               /* do things.. */
-                max_freq = ULONG_MAX;
-                max_opp = dev_pm_opp_find_freq_floor(dev,&max_freq);
-                requested_opp = dev_pm_opp_find_freq_ceil(dev,&freq);
-                if (!IS_ERR(max_opp) && !IS_ERR(requested_opp))
-                       r = soc_test_validity(max_opp, requested_opp);
-                dev_pm_opp_put(max_opp);
-                dev_pm_opp_put(requested_opp);
-               /* do other things */
-        }
-        soc_test_validity(..)
-        {
-                if(dev_pm_opp_get_voltage(max_opp) < dev_pm_opp_get_voltage(requested_opp))
-                        return -EINVAL;
-                if(dev_pm_opp_get_freq(max_opp) < dev_pm_opp_get_freq(requested_opp))
-                        return -EINVAL;
-               /* do things.. */
-        }
-
-dev_pm_opp_get_opp_count - Retrieve the number of available opps for a device
-       Example: Lets say a co-processor in the SoC needs to know the available
-       frequencies in a table, the main processor can notify as following:
-        soc_notify_coproc_available_frequencies()
-        {
-               /* Do things */
-               num_available = dev_pm_opp_get_opp_count(dev);
-               speeds = kzalloc(sizeof(u32) * num_available, GFP_KERNEL);
-               /* populate the table in increasing order */
-               freq = 0;
-               while (!IS_ERR(opp = dev_pm_opp_find_freq_ceil(dev, &freq))) {
-                       speeds[i] = freq;
-                       freq++;
-                       i++;
-                       dev_pm_opp_put(opp);
-               }
-
-               soc_notify_coproc(AVAILABLE_FREQs, speeds, num_available);
-               /* Do other things */
-        }
-
-6. Data Structures
-==================
-Typically an SoC contains multiple voltage domains which are variable. Each
-domain is represented by a device pointer. The relationship to OPP can be
-represented as follows:
-SoC
- |- device 1
- |     |- opp 1 (availability, freq, voltage)
- |     |- opp 2 ..
- ...   ...
- |     `- opp n ..
- |- device 2
- ...
- `- device m
-
-OPP library maintains a internal list that the SoC framework populates and
-accessed by various functions as described above. However, the structures
-representing the actual OPPs and domains are internal to the OPP library itself
-to allow for suitable abstraction reusable across systems.
-
-struct dev_pm_opp - The internal data structure of OPP library which is used to
-       represent an OPP. In addition to the freq, voltage, availability
-       information, it also contains internal book keeping information required
-       for the OPP library to operate on.  Pointer to this structure is
-       provided back to the users such as SoC framework to be used as a
-       identifier for OPP in the interactions with OPP layer.
-
-       WARNING: The struct dev_pm_opp pointer should not be parsed or modified by the
-       users. The defaults of for an instance is populated by dev_pm_opp_add, but the
-       availability of the OPP can be modified by dev_pm_opp_enable/disable functions.
-
-struct device - This is used to identify a domain to the OPP layer. The
-       nature of the device and it's implementation is left to the user of
-       OPP library such as the SoC framework.
-
-Overall, in a simplistic view, the data structure operations is represented as
-following:
-
-Initialization / modification:
-            +-----+        /- dev_pm_opp_enable
-dev_pm_opp_add --> | opp | <-------
-  |         +-----+        \- dev_pm_opp_disable
-  \-------> domain_info(device)
-
-Search functions:
-             /-- dev_pm_opp_find_freq_ceil  ---\   +-----+
-domain_info<---- dev_pm_opp_find_freq_exact -----> | opp |
-             \-- dev_pm_opp_find_freq_floor ---/   +-----+
-
-Retrieval functions:
-+-----+     /- dev_pm_opp_get_voltage
-| opp | <---
-+-----+     \- dev_pm_opp_get_freq
-
-domain_info <- dev_pm_opp_get_opp_count
diff --git a/Documentation/power/pci.rst b/Documentation/power/pci.rst
new file mode 100644 (file)
index 0000000..0e2ef74
--- /dev/null
@@ -0,0 +1,1135 @@
+====================
+PCI Power Management
+====================
+
+Copyright (c) 2010 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
+
+An overview of concepts and the Linux kernel's interfaces related to PCI power
+management.  Based on previous work by Patrick Mochel <mochel@transmeta.com>
+(and others).
+
+This document only covers the aspects of power management specific to PCI
+devices.  For general description of the kernel's interfaces related to device
+power management refer to Documentation/driver-api/pm/devices.rst and
+Documentation/power/runtime_pm.rst.
+
+.. contents:
+
+   1. Hardware and Platform Support for PCI Power Management
+   2. PCI Subsystem and Device Power Management
+   3. PCI Device Drivers and Power Management
+   4. Resources
+
+
+1. Hardware and Platform Support for PCI Power Management
+=========================================================
+
+1.1. Native and Platform-Based Power Management
+-----------------------------------------------
+
+In general, power management is a feature allowing one to save energy by putting
+devices into states in which they draw less power (low-power states) at the
+price of reduced functionality or performance.
+
+Usually, a device is put into a low-power state when it is underutilized or
+completely inactive.  However, when it is necessary to use the device once
+again, it has to be put back into the "fully functional" state (full-power
+state).  This may happen when there are some data for the device to handle or
+as a result of an external event requiring the device to be active, which may
+be signaled by the device itself.
+
+PCI devices may be put into low-power states in two ways, by using the device
+capabilities introduced by the PCI Bus Power Management Interface Specification,
+or with the help of platform firmware, such as an ACPI BIOS.  In the first
+approach, that is referred to as the native PCI power management (native PCI PM)
+in what follows, the device power state is changed as a result of writing a
+specific value into one of its standard configuration registers.  The second
+approach requires the platform firmware to provide special methods that may be
+used by the kernel to change the device's power state.
+
+Devices supporting the native PCI PM usually can generate wakeup signals called
+Power Management Events (PMEs) to let the kernel know about external events
+requiring the device to be active.  After receiving a PME the kernel is supposed
+to put the device that sent it into the full-power state.  However, the PCI Bus
+Power Management Interface Specification doesn't define any standard method of
+delivering the PME from the device to the CPU and the operating system kernel.
+It is assumed that the platform firmware will perform this task and therefore,
+even though a PCI device is set up to generate PMEs, it also may be necessary to
+prepare the platform firmware for notifying the CPU of the PMEs coming from the
+device (e.g. by generating interrupts).
+
+In turn, if the methods provided by the platform firmware are used for changing
+the power state of a device, usually the platform also provides a method for
+preparing the device to generate wakeup signals.  In that case, however, it
+often also is necessary to prepare the device for generating PMEs using the
+native PCI PM mechanism, because the method provided by the platform depends on
+that.
+
+Thus in many situations both the native and the platform-based power management
+mechanisms have to be used simultaneously to obtain the desired result.
+
+1.2. Native PCI Power Management
+--------------------------------
+
+The PCI Bus Power Management Interface Specification (PCI PM Spec) was
+introduced between the PCI 2.1 and PCI 2.2 Specifications.  It defined a
+standard interface for performing various operations related to power
+management.
+
+The implementation of the PCI PM Spec is optional for conventional PCI devices,
+but it is mandatory for PCI Express devices.  If a device supports the PCI PM
+Spec, it has an 8 byte power management capability field in its PCI
+configuration space.  This field is used to describe and control the standard
+features related to the native PCI power management.
+
+The PCI PM Spec defines 4 operating states for devices (D0-D3) and for buses
+(B0-B3).  The higher the number, the less power is drawn by the device or bus
+in that state.  However, the higher the number, the longer the latency for
+the device or bus to return to the full-power state (D0 or B0, respectively).
+
+There are two variants of the D3 state defined by the specification.  The first
+one is D3hot, referred to as the software accessible D3, because devices can be
+programmed to go into it.  The second one, D3cold, is the state that PCI devices
+are in when the supply voltage (Vcc) is removed from them.  It is not possible
+to program a PCI device to go into D3cold, although there may be a programmable
+interface for putting the bus the device is on into a state in which Vcc is
+removed from all devices on the bus.
+
+PCI bus power management, however, is not supported by the Linux kernel at the
+time of this writing and therefore it is not covered by this document.
+
+Note that every PCI device can be in the full-power state (D0) or in D3cold,
+regardless of whether or not it implements the PCI PM Spec.  In addition to
+that, if the PCI PM Spec is implemented by the device, it must support D3hot
+as well as D0.  The support for the D1 and D2 power states is optional.
+
+PCI devices supporting the PCI PM Spec can be programmed to go to any of the
+supported low-power states (except for D3cold).  While in D1-D3hot the
+standard configuration registers of the device must be accessible to software
+(i.e. the device is required to respond to PCI configuration accesses), although
+its I/O and memory spaces are then disabled.  This allows the device to be
+programmatically put into D0.  Thus the kernel can switch the device back and
+forth between D0 and the supported low-power states (except for D3cold) and the
+possible power state transitions the device can undergo are the following:
+
++----------------------------+
+| Current State | New State  |
++----------------------------+
+| D0            | D1, D2, D3 |
++----------------------------+
+| D1            | D2, D3     |
++----------------------------+
+| D2            | D3         |
++----------------------------+
+| D1, D2, D3    | D0         |
++----------------------------+
+
+The transition from D3cold to D0 occurs when the supply voltage is provided to
+the device (i.e. power is restored).  In that case the device returns to D0 with
+a full power-on reset sequence and the power-on defaults are restored to the
+device by hardware just as at initial power up.
+
+PCI devices supporting the PCI PM Spec can be programmed to generate PMEs
+while in a low-power state (D1-D3), but they are not required to be capable
+of generating PMEs from all supported low-power states.  In particular, the
+capability of generating PMEs from D3cold is optional and depends on the
+presence of additional voltage (3.3Vaux) allowing the device to remain
+sufficiently active to generate a wakeup signal.
+
+1.3. ACPI Device Power Management
+---------------------------------
+
+The platform firmware support for the power management of PCI devices is
+system-specific.  However, if the system in question is compliant with the
+Advanced Configuration and Power Interface (ACPI) Specification, like the
+majority of x86-based systems, it is supposed to implement device power
+management interfaces defined by the ACPI standard.
+
+For this purpose the ACPI BIOS provides special functions called "control
+methods" that may be executed by the kernel to perform specific tasks, such as
+putting a device into a low-power state.  These control methods are encoded
+using special byte-code language called the ACPI Machine Language (AML) and
+stored in the machine's BIOS.  The kernel loads them from the BIOS and executes
+them as needed using an AML interpreter that translates the AML byte code into
+computations and memory or I/O space accesses.  This way, in theory, a BIOS
+writer can provide the kernel with a means to perform actions depending
+on the system design in a system-specific fashion.
+
+ACPI control methods may be divided into global control methods, that are not
+associated with any particular devices, and device control methods, that have
+to be defined separately for each device supposed to be handled with the help of
+the platform.  This means, in particular, that ACPI device control methods can
+only be used to handle devices that the BIOS writer knew about in advance.  The
+ACPI methods used for device power management fall into that category.
+
+The ACPI specification assumes that devices can be in one of four power states
+labeled as D0, D1, D2, and D3 that roughly correspond to the native PCI PM
+D0-D3 states (although the difference between D3hot and D3cold is not taken
+into account by ACPI).  Moreover, for each power state of a device there is a
+set of power resources that have to be enabled for the device to be put into
+that state.  These power resources are controlled (i.e. enabled or disabled)
+with the help of their own control methods, _ON and _OFF, that have to be
+defined individually for each of them.
+
+To put a device into the ACPI power state Dx (where x is a number between 0 and
+3 inclusive) the kernel is supposed to (1) enable the power resources required
+by the device in this state using their _ON control methods and (2) execute the
+_PSx control method defined for the device.  In addition to that, if the device
+is going to be put into a low-power state (D1-D3) and is supposed to generate
+wakeup signals from that state, the _DSW (or _PSW, replaced with _DSW by ACPI
+3.0) control method defined for it has to be executed before _PSx.  Power
+resources that are not required by the device in the target power state and are
+not required any more by any other device should be disabled (by executing their
+_OFF control methods).  If the current power state of the device is D3, it can
+only be put into D0 this way.
+
+However, quite often the power states of devices are changed during a
+system-wide transition into a sleep state or back into the working state.  ACPI
+defines four system sleep states, S1, S2, S3, and S4, and denotes the system
+working state as S0.  In general, the target system sleep (or working) state
+determines the highest power (lowest number) state the device can be put
+into and the kernel is supposed to obtain this information by executing the
+device's _SxD control method (where x is a number between 0 and 4 inclusive).
+If the device is required to wake up the system from the target sleep state, the
+lowest power (highest number) state it can be put into is also determined by the
+target state of the system.  The kernel is then supposed to use the device's
+_SxW control method to obtain the number of that state.  It also is supposed to
+use the device's _PRW control method to learn which power resources need to be
+enabled for the device to be able to generate wakeup signals.
+
+1.4. Wakeup Signaling
+---------------------
+
+Wakeup signals generated by PCI devices, either as native PCI PMEs, or as
+a result of the execution of the _DSW (or _PSW) ACPI control method before
+putting the device into a low-power state, have to be caught and handled as
+appropriate.  If they are sent while the system is in the working state
+(ACPI S0), they should be translated into interrupts so that the kernel can
+put the devices generating them into the full-power state and take care of the
+events that triggered them.  In turn, if they are sent while the system is
+sleeping, they should cause the system's core logic to trigger wakeup.
+
+On ACPI-based systems wakeup signals sent by conventional PCI devices are
+converted into ACPI General-Purpose Events (GPEs) which are hardware signals
+from the system core logic generated in response to various events that need to
+be acted upon.  Every GPE is associated with one or more sources of potentially
+interesting events.  In particular, a GPE may be associated with a PCI device
+capable of signaling wakeup.  The information on the connections between GPEs
+and event sources is recorded in the system's ACPI BIOS from where it can be
+read by the kernel.
+
+If a PCI device known to the system's ACPI BIOS signals wakeup, the GPE
+associated with it (if there is one) is triggered.  The GPEs associated with PCI
+bridges may also be triggered in response to a wakeup signal from one of the
+devices below the bridge (this also is the case for root bridges) and, for
+example, native PCI PMEs from devices unknown to the system's ACPI BIOS may be
+handled this way.
+
+A GPE may be triggered when the system is sleeping (i.e. when it is in one of
+the ACPI S1-S4 states), in which case system wakeup is started by its core logic
+(the device that was the source of the signal causing the system wakeup to occur
+may be identified later).  The GPEs used in such situations are referred to as
+wakeup GPEs.
+
+Usually, however, GPEs are also triggered when the system is in the working
+state (ACPI S0) and in that case the system's core logic generates a System
+Control Interrupt (SCI) to notify the kernel of the event.  Then, the SCI
+handler identifies the GPE that caused the interrupt to be generated which,
+in turn, allows the kernel to identify the source of the event (that may be
+a PCI device signaling wakeup).  The GPEs used for notifying the kernel of
+events occurring while the system is in the working state are referred to as
+runtime GPEs.
+
+Unfortunately, there is no standard way of handling wakeup signals sent by
+conventional PCI devices on systems that are not ACPI-based, but there is one
+for PCI Express devices.  Namely, the PCI Express Base Specification introduced
+a native mechanism for converting native PCI PMEs into interrupts generated by
+root ports.  For conventional PCI devices native PMEs are out-of-band, so they
+are routed separately and they need not pass through bridges (in principle they
+may be routed directly to the system's core logic), but for PCI Express devices
+they are in-band messages that have to pass through the PCI Express hierarchy,
+including the root port on the path from the device to the Root Complex.  Thus
+it was possible to introduce a mechanism by which a root port generates an
+interrupt whenever it receives a PME message from one of the devices below it.
+The PCI Express Requester ID of the device that sent the PME message is then
+recorded in one of the root port's configuration registers from where it may be
+read by the interrupt handler allowing the device to be identified.  [PME
+messages sent by PCI Express endpoints integrated with the Root Complex don't
+pass through root ports, but instead they cause a Root Complex Event Collector
+(if there is one) to generate interrupts.]
+
+In principle the native PCI Express PME signaling may also be used on ACPI-based
+systems along with the GPEs, but to use it the kernel has to ask the system's
+ACPI BIOS to release control of root port configuration registers.  The ACPI
+BIOS, however, is not required to allow the kernel to control these registers
+and if it doesn't do that, the kernel must not modify their contents.  Of course
+the native PCI Express PME signaling cannot be used by the kernel in that case.
+
+
+2. PCI Subsystem and Device Power Management
+============================================
+
+2.1. Device Power Management Callbacks
+--------------------------------------
+
+The PCI Subsystem participates in the power management of PCI devices in a
+number of ways.  First of all, it provides an intermediate code layer between
+the device power management core (PM core) and PCI device drivers.
+Specifically, the pm field of the PCI subsystem's struct bus_type object,
+pci_bus_type, points to a struct dev_pm_ops object, pci_dev_pm_ops, containing
+pointers to several device power management callbacks::
+
+  const struct dev_pm_ops pci_dev_pm_ops = {
+       .prepare = pci_pm_prepare,
+       .complete = pci_pm_complete,
+       .suspend = pci_pm_suspend,
+       .resume = pci_pm_resume,
+       .freeze = pci_pm_freeze,
+       .thaw = pci_pm_thaw,
+       .poweroff = pci_pm_poweroff,
+       .restore = pci_pm_restore,
+       .suspend_noirq = pci_pm_suspend_noirq,
+       .resume_noirq = pci_pm_resume_noirq,
+       .freeze_noirq = pci_pm_freeze_noirq,
+       .thaw_noirq = pci_pm_thaw_noirq,
+       .poweroff_noirq = pci_pm_poweroff_noirq,
+       .restore_noirq = pci_pm_restore_noirq,
+       .runtime_suspend = pci_pm_runtime_suspend,
+       .runtime_resume = pci_pm_runtime_resume,
+       .runtime_idle = pci_pm_runtime_idle,
+  };
+
+These callbacks are executed by the PM core in various situations related to
+device power management and they, in turn, execute power management callbacks
+provided by PCI device drivers.  They also perform power management operations
+involving some standard configuration registers of PCI devices that device
+drivers need not know or care about.
+
+The structure representing a PCI device, struct pci_dev, contains several fields
+that these callbacks operate on::
+
+  struct pci_dev {
+       ...
+       pci_power_t     current_state;  /* Current operating state. */
+       int             pm_cap;         /* PM capability offset in the
+                                          configuration space */
+       unsigned int    pme_support:5;  /* Bitmask of states from which PME#
+                                          can be generated */
+       unsigned int    pme_interrupt:1;/* Is native PCIe PME signaling used? */
+       unsigned int    d1_support:1;   /* Low power state D1 is supported */
+       unsigned int    d2_support:1;   /* Low power state D2 is supported */
+       unsigned int    no_d1d2:1;      /* D1 and D2 are forbidden */
+       unsigned int    wakeup_prepared:1;  /* Device prepared for wake up */
+       unsigned int    d3_delay;       /* D3->D0 transition time in ms */
+       ...
+  };
+
+They also indirectly use some fields of the struct device that is embedded in
+struct pci_dev.
+
+2.2. Device Initialization
+--------------------------
+
+The PCI subsystem's first task related to device power management is to
+prepare the device for power management and initialize the fields of struct
+pci_dev used for this purpose.  This happens in two functions defined in
+drivers/pci/pci.c, pci_pm_init() and platform_pci_wakeup_init().
+
+The first of these functions checks if the device supports native PCI PM
+and if that's the case the offset of its power management capability structure
+in the configuration space is stored in the pm_cap field of the device's struct
+pci_dev object.  Next, the function checks which PCI low-power states are
+supported by the device and from which low-power states the device can generate
+native PCI PMEs.  The power management fields of the device's struct pci_dev and
+the struct device embedded in it are updated accordingly and the generation of
+PMEs by the device is disabled.
+
+The second function checks if the device can be prepared to signal wakeup with
+the help of the platform firmware, such as the ACPI BIOS.  If that is the case,
+the function updates the wakeup fields in struct device embedded in the
+device's struct pci_dev and uses the firmware-provided method to prevent the
+device from signaling wakeup.
+
+At this point the device is ready for power management.  For driverless devices,
+however, this functionality is limited to a few basic operations carried out
+during system-wide transitions to a sleep state and back to the working state.
+
+2.3. Runtime Device Power Management
+------------------------------------
+
+The PCI subsystem plays a vital role in the runtime power management of PCI
+devices.  For this purpose it uses the general runtime power management
+(runtime PM) framework described in Documentation/power/runtime_pm.rst.
+Namely, it provides subsystem-level callbacks::
+
+       pci_pm_runtime_suspend()
+       pci_pm_runtime_resume()
+       pci_pm_runtime_idle()
+
+that are executed by the core runtime PM routines.  It also implements the
+entire mechanics necessary for handling runtime wakeup signals from PCI devices
+in low-power states, which at the time of this writing works for both the native
+PCI Express PME signaling and the ACPI GPE-based wakeup signaling described in
+Section 1.
+
+First, a PCI device is put into a low-power state, or suspended, with the help
+of pm_schedule_suspend() or pm_runtime_suspend() which for PCI devices call
+pci_pm_runtime_suspend() to do the actual job.  For this to work, the device's
+driver has to provide a pm->runtime_suspend() callback (see below), which is
+run by pci_pm_runtime_suspend() as the first action.  If the driver's callback
+returns successfully, the device's standard configuration registers are saved,
+the device is prepared to generate wakeup signals and, finally, it is put into
+the target low-power state.
+
+The low-power state to put the device into is the lowest-power (highest number)
+state from which it can signal wakeup.  The exact method of signaling wakeup is
+system-dependent and is determined by the PCI subsystem on the basis of the
+reported capabilities of the device and the platform firmware.  To prepare the
+device for signaling wakeup and put it into the selected low-power state, the
+PCI subsystem can use the platform firmware as well as the device's native PCI
+PM capabilities, if supported.
+
+It is expected that the device driver's pm->runtime_suspend() callback will
+not attempt to prepare the device for signaling wakeup or to put it into a
+low-power state.  The driver ought to leave these tasks to the PCI subsystem
+that has all of the information necessary to perform them.
+
+A suspended device is brought back into the "active" state, or resumed,
+with the help of pm_request_resume() or pm_runtime_resume() which both call
+pci_pm_runtime_resume() for PCI devices.  Again, this only works if the device's
+driver provides a pm->runtime_resume() callback (see below).  However, before
+the driver's callback is executed, pci_pm_runtime_resume() brings the device
+back into the full-power state, prevents it from signaling wakeup while in that
+state and restores its standard configuration registers.  Thus the driver's
+callback need not worry about the PCI-specific aspects of the device resume.
+
+Note that generally pci_pm_runtime_resume() may be called in two different
+situations.  First, it may be called at the request of the device's driver, for
+example if there are some data for it to process.  Second, it may be called
+as a result of a wakeup signal from the device itself (this sometimes is
+referred to as "remote wakeup").  Of course, for this purpose the wakeup signal
+is handled in one of the ways described in Section 1 and finally converted into
+a notification for the PCI subsystem after the source device has been
+identified.
+
+The pci_pm_runtime_idle() function, called for PCI devices by pm_runtime_idle()
+and pm_request_idle(), executes the device driver's pm->runtime_idle()
+callback, if defined, and if that callback doesn't return error code (or is not
+present at all), suspends the device with the help of pm_runtime_suspend().
+Sometimes pci_pm_runtime_idle() is called automatically by the PM core (for
+example, it is called right after the device has just been resumed), in which
+cases it is expected to suspend the device if that makes sense.  Usually,
+however, the PCI subsystem doesn't really know if the device really can be
+suspended, so it lets the device's driver decide by running its
+pm->runtime_idle() callback.
+
+2.4. System-Wide Power Transitions
+----------------------------------
+There are a few different types of system-wide power transitions, described in
+Documentation/driver-api/pm/devices.rst.  Each of them requires devices to be handled
+in a specific way and the PM core executes subsystem-level power management
+callbacks for this purpose.  They are executed in phases such that each phase
+involves executing the same subsystem-level callback for every device belonging
+to the given subsystem before the next phase begins.  These phases always run
+after tasks have been frozen.
+
+2.4.1. System Suspend
+^^^^^^^^^^^^^^^^^^^^^
+
+When the system is going into a sleep state in which the contents of memory will
+be preserved, such as one of the ACPI sleep states S1-S3, the phases are:
+
+       prepare, suspend, suspend_noirq.
+
+The following PCI bus type's callbacks, respectively, are used in these phases::
+
+       pci_pm_prepare()
+       pci_pm_suspend()
+       pci_pm_suspend_noirq()
+
+The pci_pm_prepare() routine first puts the device into the "fully functional"
+state with the help of pm_runtime_resume().  Then, it executes the device
+driver's pm->prepare() callback if defined (i.e. if the driver's struct
+dev_pm_ops object is present and the prepare pointer in that object is valid).
+
+The pci_pm_suspend() routine first checks if the device's driver implements
+legacy PCI suspend routines (see Section 3), in which case the driver's legacy
+suspend callback is executed, if present, and its result is returned.  Next, if
+the device's driver doesn't provide a struct dev_pm_ops object (containing
+pointers to the driver's callbacks), pci_pm_default_suspend() is called, which
+simply turns off the device's bus master capability and runs
+pcibios_disable_device() to disable it, unless the device is a bridge (PCI
+bridges are ignored by this routine).  Next, the device driver's pm->suspend()
+callback is executed, if defined, and its result is returned if it fails.
+Finally, pci_fixup_device() is called to apply hardware suspend quirks related
+to the device if necessary.
+
+Note that the suspend phase is carried out asynchronously for PCI devices, so
+the pci_pm_suspend() callback may be executed in parallel for any pair of PCI
+devices that don't depend on each other in a known way (i.e. none of the paths
+in the device tree from the root bridge to a leaf device contains both of them).
+
+The pci_pm_suspend_noirq() routine is executed after suspend_device_irqs() has
+been called, which means that the device driver's interrupt handler won't be
+invoked while this routine is running.  It first checks if the device's driver
+implements legacy PCI suspends routines (Section 3), in which case the legacy
+late suspend routine is called and its result is returned (the standard
+configuration registers of the device are saved if the driver's callback hasn't
+done that).  Second, if the device driver's struct dev_pm_ops object is not
+present, the device's standard configuration registers are saved and the routine
+returns success.  Otherwise the device driver's pm->suspend_noirq() callback is
+executed, if present, and its result is returned if it fails.  Next, if the
+device's standard configuration registers haven't been saved yet (one of the
+device driver's callbacks executed before might do that), pci_pm_suspend_noirq()
+saves them, prepares the device to signal wakeup (if necessary) and puts it into
+a low-power state.
+
+The low-power state to put the device into is the lowest-power (highest number)
+state from which it can signal wakeup while the system is in the target sleep
+state.  Just like in the runtime PM case described above, the mechanism of
+signaling wakeup is system-dependent and determined by the PCI subsystem, which
+is also responsible for preparing the device to signal wakeup from the system's
+target sleep state as appropriate.
+
+PCI device drivers (that don't implement legacy power management callbacks) are
+generally not expected to prepare devices for signaling wakeup or to put them
+into low-power states.  However, if one of the driver's suspend callbacks
+(pm->suspend() or pm->suspend_noirq()) saves the device's standard configuration
+registers, pci_pm_suspend_noirq() will assume that the device has been prepared
+to signal wakeup and put into a low-power state by the driver (the driver is
+then assumed to have used the helper functions provided by the PCI subsystem for
+this purpose).  PCI device drivers are not encouraged to do that, but in some
+rare cases doing that in the driver may be the optimum approach.
+
+2.4.2. System Resume
+^^^^^^^^^^^^^^^^^^^^
+
+When the system is undergoing a transition from a sleep state in which the
+contents of memory have been preserved, such as one of the ACPI sleep states
+S1-S3, into the working state (ACPI S0), the phases are:
+
+       resume_noirq, resume, complete.
+
+The following PCI bus type's callbacks, respectively, are executed in these
+phases::
+
+       pci_pm_resume_noirq()
+       pci_pm_resume()
+       pci_pm_complete()
+
+The pci_pm_resume_noirq() routine first puts the device into the full-power
+state, restores its standard configuration registers and applies early resume
+hardware quirks related to the device, if necessary.  This is done
+unconditionally, regardless of whether or not the device's driver implements
+legacy PCI power management callbacks (this way all PCI devices are in the
+full-power state and their standard configuration registers have been restored
+when their interrupt handlers are invoked for the first time during resume,
+which allows the kernel to avoid problems with the handling of shared interrupts
+by drivers whose devices are still suspended).  If legacy PCI power management
+callbacks (see Section 3) are implemented by the device's driver, the legacy
+early resume callback is executed and its result is returned.  Otherwise, the
+device driver's pm->resume_noirq() callback is executed, if defined, and its
+result is returned.
+
+The pci_pm_resume() routine first checks if the device's standard configuration
+registers have been restored and restores them if that's not the case (this
+only is necessary in the error path during a failing suspend).  Next, resume
+hardware quirks related to the device are applied, if necessary, and if the
+device's driver implements legacy PCI power management callbacks (see
+Section 3), the driver's legacy resume callback is executed and its result is
+returned.  Otherwise, the device's wakeup signaling mechanisms are blocked and
+its driver's pm->resume() callback is executed, if defined (the callback's
+result is then returned).
+
+The resume phase is carried out asynchronously for PCI devices, like the
+suspend phase described above, which means that if two PCI devices don't depend
+on each other in a known way, the pci_pm_resume() routine may be executed for
+the both of them in parallel.
+
+The pci_pm_complete() routine only executes the device driver's pm->complete()
+callback, if defined.
+
+2.4.3. System Hibernation
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+System hibernation is more complicated than system suspend, because it requires
+a system image to be created and written into a persistent storage medium.  The
+image is created atomically and all devices are quiesced, or frozen, before that
+happens.
+
+The freezing of devices is carried out after enough memory has been freed (at
+the time of this writing the image creation requires at least 50% of system RAM
+to be free) in the following three phases:
+
+       prepare, freeze, freeze_noirq
+
+that correspond to the PCI bus type's callbacks::
+
+       pci_pm_prepare()
+       pci_pm_freeze()
+       pci_pm_freeze_noirq()
+
+This means that the prepare phase is exactly the same as for system suspend.
+The other two phases, however, are different.
+
+The pci_pm_freeze() routine is quite similar to pci_pm_suspend(), but it runs
+the device driver's pm->freeze() callback, if defined, instead of pm->suspend(),
+and it doesn't apply the suspend-related hardware quirks.  It is executed
+asynchronously for different PCI devices that don't depend on each other in a
+known way.
+
+The pci_pm_freeze_noirq() routine, in turn, is similar to
+pci_pm_suspend_noirq(), but it calls the device driver's pm->freeze_noirq()
+routine instead of pm->suspend_noirq().  It also doesn't attempt to prepare the
+device for signaling wakeup and put it into a low-power state.  Still, it saves
+the device's standard configuration registers if they haven't been saved by one
+of the driver's callbacks.
+
+Once the image has been created, it has to be saved.  However, at this point all
+devices are frozen and they cannot handle I/O, while their ability to handle
+I/O is obviously necessary for the image saving.  Thus they have to be brought
+back to the fully functional state and this is done in the following phases:
+
+       thaw_noirq, thaw, complete
+
+using the following PCI bus type's callbacks::
+
+       pci_pm_thaw_noirq()
+       pci_pm_thaw()
+       pci_pm_complete()
+
+respectively.
+
+The first of them, pci_pm_thaw_noirq(), is analogous to pci_pm_resume_noirq(),
+but it doesn't put the device into the full power state and doesn't attempt to
+restore its standard configuration registers.  It also executes the device
+driver's pm->thaw_noirq() callback, if defined, instead of pm->resume_noirq().
+
+The pci_pm_thaw() routine is similar to pci_pm_resume(), but it runs the device
+driver's pm->thaw() callback instead of pm->resume().  It is executed
+asynchronously for different PCI devices that don't depend on each other in a
+known way.
+
+The complete phase it the same as for system resume.
+
+After saving the image, devices need to be powered down before the system can
+enter the target sleep state (ACPI S4 for ACPI-based systems).  This is done in
+three phases:
+
+       prepare, poweroff, poweroff_noirq
+
+where the prepare phase is exactly the same as for system suspend.  The other
+two phases are analogous to the suspend and suspend_noirq phases, respectively.
+The PCI subsystem-level callbacks they correspond to::
+
+       pci_pm_poweroff()
+       pci_pm_poweroff_noirq()
+
+work in analogy with pci_pm_suspend() and pci_pm_poweroff_noirq(), respectively,
+although they don't attempt to save the device's standard configuration
+registers.
+
+2.4.4. System Restore
+^^^^^^^^^^^^^^^^^^^^^
+
+System restore requires a hibernation image to be loaded into memory and the
+pre-hibernation memory contents to be restored before the pre-hibernation system
+activity can be resumed.
+
+As described in Documentation/driver-api/pm/devices.rst, the hibernation image is loaded
+into memory by a fresh instance of the kernel, called the boot kernel, which in
+turn is loaded and run by a boot loader in the usual way.  After the boot kernel
+has loaded the image, it needs to replace its own code and data with the code
+and data of the "hibernated" kernel stored within the image, called the image
+kernel.  For this purpose all devices are frozen just like before creating
+the image during hibernation, in the
+
+       prepare, freeze, freeze_noirq
+
+phases described above.  However, the devices affected by these phases are only
+those having drivers in the boot kernel; other devices will still be in whatever
+state the boot loader left them.
+
+Should the restoration of the pre-hibernation memory contents fail, the boot
+kernel would go through the "thawing" procedure described above, using the
+thaw_noirq, thaw, and complete phases (that will only affect the devices having
+drivers in the boot kernel), and then continue running normally.
+
+If the pre-hibernation memory contents are restored successfully, which is the
+usual situation, control is passed to the image kernel, which then becomes
+responsible for bringing the system back to the working state.  To achieve this,
+it must restore the devices' pre-hibernation functionality, which is done much
+like waking up from the memory sleep state, although it involves different
+phases:
+
+       restore_noirq, restore, complete
+
+The first two of these are analogous to the resume_noirq and resume phases
+described above, respectively, and correspond to the following PCI subsystem
+callbacks::
+
+       pci_pm_restore_noirq()
+       pci_pm_restore()
+
+These callbacks work in analogy with pci_pm_resume_noirq() and pci_pm_resume(),
+respectively, but they execute the device driver's pm->restore_noirq() and
+pm->restore() callbacks, if available.
+
+The complete phase is carried out in exactly the same way as during system
+resume.
+
+
+3. PCI Device Drivers and Power Management
+==========================================
+
+3.1. Power Management Callbacks
+-------------------------------
+
+PCI device drivers participate in power management by providing callbacks to be
+executed by the PCI subsystem's power management routines described above and by
+controlling the runtime power management of their devices.
+
+At the time of this writing there are two ways to define power management
+callbacks for a PCI device driver, the recommended one, based on using a
+dev_pm_ops structure described in Documentation/driver-api/pm/devices.rst, and the
+"legacy" one, in which the .suspend(), .suspend_late(), .resume_early(), and
+.resume() callbacks from struct pci_driver are used.  The legacy approach,
+however, doesn't allow one to define runtime power management callbacks and is
+not really suitable for any new drivers.  Therefore it is not covered by this
+document (refer to the source code to learn more about it).
+
+It is recommended that all PCI device drivers define a struct dev_pm_ops object
+containing pointers to power management (PM) callbacks that will be executed by
+the PCI subsystem's PM routines in various circumstances.  A pointer to the
+driver's struct dev_pm_ops object has to be assigned to the driver.pm field in
+its struct pci_driver object.  Once that has happened, the "legacy" PM callbacks
+in struct pci_driver are ignored (even if they are not NULL).
+
+The PM callbacks in struct dev_pm_ops are not mandatory and if they are not
+defined (i.e. the respective fields of struct dev_pm_ops are unset) the PCI
+subsystem will handle the device in a simplified default manner.  If they are
+defined, though, they are expected to behave as described in the following
+subsections.
+
+3.1.1. prepare()
+^^^^^^^^^^^^^^^^
+
+The prepare() callback is executed during system suspend, during hibernation
+(when a hibernation image is about to be created), during power-off after
+saving a hibernation image and during system restore, when a hibernation image
+has just been loaded into memory.
+
+This callback is only necessary if the driver's device has children that in
+general may be registered at any time.  In that case the role of the prepare()
+callback is to prevent new children of the device from being registered until
+one of the resume_noirq(), thaw_noirq(), or restore_noirq() callbacks is run.
+
+In addition to that the prepare() callback may carry out some operations
+preparing the device to be suspended, although it should not allocate memory
+(if additional memory is required to suspend the device, it has to be
+preallocated earlier, for example in a suspend/hibernate notifier as described
+in Documentation/driver-api/pm/notifiers.rst).
+
+3.1.2. suspend()
+^^^^^^^^^^^^^^^^
+
+The suspend() callback is only executed during system suspend, after prepare()
+callbacks have been executed for all devices in the system.
+
+This callback is expected to quiesce the device and prepare it to be put into a
+low-power state by the PCI subsystem.  It is not required (in fact it even is
+not recommended) that a PCI driver's suspend() callback save the standard
+configuration registers of the device, prepare it for waking up the system, or
+put it into a low-power state.  All of these operations can very well be taken
+care of by the PCI subsystem, without the driver's participation.
+
+However, in some rare case it is convenient to carry out these operations in
+a PCI driver.  Then, pci_save_state(), pci_prepare_to_sleep(), and
+pci_set_power_state() should be used to save the device's standard configuration
+registers, to prepare it for system wakeup (if necessary), and to put it into a
+low-power state, respectively.  Moreover, if the driver calls pci_save_state(),
+the PCI subsystem will not execute either pci_prepare_to_sleep(), or
+pci_set_power_state() for its device, so the driver is then responsible for
+handling the device as appropriate.
+
+While the suspend() callback is being executed, the driver's interrupt handler
+can be invoked to handle an interrupt from the device, so all suspend-related
+operations relying on the driver's ability to handle interrupts should be
+carried out in this callback.
+
+3.1.3. suspend_noirq()
+^^^^^^^^^^^^^^^^^^^^^^
+
+The suspend_noirq() callback is only executed during system suspend, after
+suspend() callbacks have been executed for all devices in the system and
+after device interrupts have been disabled by the PM core.
+
+The difference between suspend_noirq() and suspend() is that the driver's
+interrupt handler will not be invoked while suspend_noirq() is running.  Thus
+suspend_noirq() can carry out operations that would cause race conditions to
+arise if they were performed in suspend().
+
+3.1.4. freeze()
+^^^^^^^^^^^^^^^
+
+The freeze() callback is hibernation-specific and is executed in two situations,
+during hibernation, after prepare() callbacks have been executed for all devices
+in preparation for the creation of a system image, and during restore,
+after a system image has been loaded into memory from persistent storage and the
+prepare() callbacks have been executed for all devices.
+
+The role of this callback is analogous to the role of the suspend() callback
+described above.  In fact, they only need to be different in the rare cases when
+the driver takes the responsibility for putting the device into a low-power
+state.
+
+In that cases the freeze() callback should not prepare the device system wakeup
+or put it into a low-power state.  Still, either it or freeze_noirq() should
+save the device's standard configuration registers using pci_save_state().
+
+3.1.5. freeze_noirq()
+^^^^^^^^^^^^^^^^^^^^^
+
+The freeze_noirq() callback is hibernation-specific.  It is executed during
+hibernation, after prepare() and freeze() callbacks have been executed for all
+devices in preparation for the creation of a system image, and during restore,
+after a system image has been loaded into memory and after prepare() and
+freeze() callbacks have been executed for all devices.  It is always executed
+after device interrupts have been disabled by the PM core.
+
+The role of this callback is analogous to the role of the suspend_noirq()
+callback described above and it very rarely is necessary to define
+freeze_noirq().
+
+The difference between freeze_noirq() and freeze() is analogous to the
+difference between suspend_noirq() and suspend().
+
+3.1.6. poweroff()
+^^^^^^^^^^^^^^^^^
+
+The poweroff() callback is hibernation-specific.  It is executed when the system
+is about to be powered off after saving a hibernation image to a persistent
+storage.  prepare() callbacks are executed for all devices before poweroff() is
+called.
+
+The role of this callback is analogous to the role of the suspend() and freeze()
+callbacks described above, although it does not need to save the contents of
+the device's registers.  In particular, if the driver wants to put the device
+into a low-power state itself instead of allowing the PCI subsystem to do that,
+the poweroff() callback should use pci_prepare_to_sleep() and
+pci_set_power_state() to prepare the device for system wakeup and to put it
+into a low-power state, respectively, but it need not save the device's standard
+configuration registers.
+
+3.1.7. poweroff_noirq()
+^^^^^^^^^^^^^^^^^^^^^^^
+
+The poweroff_noirq() callback is hibernation-specific.  It is executed after
+poweroff() callbacks have been executed for all devices in the system.
+
+The role of this callback is analogous to the role of the suspend_noirq() and
+freeze_noirq() callbacks described above, but it does not need to save the
+contents of the device's registers.
+
+The difference between poweroff_noirq() and poweroff() is analogous to the
+difference between suspend_noirq() and suspend().
+
+3.1.8. resume_noirq()
+^^^^^^^^^^^^^^^^^^^^^
+
+The resume_noirq() callback is only executed during system resume, after the
+PM core has enabled the non-boot CPUs.  The driver's interrupt handler will not
+be invoked while resume_noirq() is running, so this callback can carry out
+operations that might race with the interrupt handler.
+
+Since the PCI subsystem unconditionally puts all devices into the full power
+state in the resume_noirq phase of system resume and restores their standard
+configuration registers, resume_noirq() is usually not necessary.  In general
+it should only be used for performing operations that would lead to race
+conditions if carried out by resume().
+
+3.1.9. resume()
+^^^^^^^^^^^^^^^
+
+The resume() callback is only executed during system resume, after
+resume_noirq() callbacks have been executed for all devices in the system and
+device interrupts have been enabled by the PM core.
+
+This callback is responsible for restoring the pre-suspend configuration of the
+device and bringing it back to the fully functional state.  The device should be
+able to process I/O in a usual way after resume() has returned.
+
+3.1.10. thaw_noirq()
+^^^^^^^^^^^^^^^^^^^^
+
+The thaw_noirq() callback is hibernation-specific.  It is executed after a
+system image has been created and the non-boot CPUs have been enabled by the PM
+core, in the thaw_noirq phase of hibernation.  It also may be executed if the
+loading of a hibernation image fails during system restore (it is then executed
+after enabling the non-boot CPUs).  The driver's interrupt handler will not be
+invoked while thaw_noirq() is running.
+
+The role of this callback is analogous to the role of resume_noirq().  The
+difference between these two callbacks is that thaw_noirq() is executed after
+freeze() and freeze_noirq(), so in general it does not need to modify the
+contents of the device's registers.
+
+3.1.11. thaw()
+^^^^^^^^^^^^^^
+
+The thaw() callback is hibernation-specific.  It is executed after thaw_noirq()
+callbacks have been executed for all devices in the system and after device
+interrupts have been enabled by the PM core.
+
+This callback is responsible for restoring the pre-freeze configuration of
+the device, so that it will work in a usual way after thaw() has returned.
+
+3.1.12. restore_noirq()
+^^^^^^^^^^^^^^^^^^^^^^^
+
+The restore_noirq() callback is hibernation-specific.  It is executed in the
+restore_noirq phase of hibernation, when the boot kernel has passed control to
+the image kernel and the non-boot CPUs have been enabled by the image kernel's
+PM core.
+
+This callback is analogous to resume_noirq() with the exception that it cannot
+make any assumption on the previous state of the device, even if the BIOS (or
+generally the platform firmware) is known to preserve that state over a
+suspend-resume cycle.
+
+For the vast majority of PCI device drivers there is no difference between
+resume_noirq() and restore_noirq().
+
+3.1.13. restore()
+^^^^^^^^^^^^^^^^^
+
+The restore() callback is hibernation-specific.  It is executed after
+restore_noirq() callbacks have been executed for all devices in the system and
+after the PM core has enabled device drivers' interrupt handlers to be invoked.
+
+This callback is analogous to resume(), just like restore_noirq() is analogous
+to resume_noirq().  Consequently, the difference between restore_noirq() and
+restore() is analogous to the difference between resume_noirq() and resume().
+
+For the vast majority of PCI device drivers there is no difference between
+resume() and restore().
+
+3.1.14. complete()
+^^^^^^^^^^^^^^^^^^
+
+The complete() callback is executed in the following situations:
+
+  - during system resume, after resume() callbacks have been executed for all
+    devices,
+  - during hibernation, before saving the system image, after thaw() callbacks
+    have been executed for all devices,
+  - during system restore, when the system is going back to its pre-hibernation
+    state, after restore() callbacks have been executed for all devices.
+
+It also may be executed if the loading of a hibernation image into memory fails
+(in that case it is run after thaw() callbacks have been executed for all
+devices that have drivers in the boot kernel).
+
+This callback is entirely optional, although it may be necessary if the
+prepare() callback performs operations that need to be reversed.
+
+3.1.15. runtime_suspend()
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The runtime_suspend() callback is specific to device runtime power management
+(runtime PM).  It is executed by the PM core's runtime PM framework when the
+device is about to be suspended (i.e. quiesced and put into a low-power state)
+at run time.
+
+This callback is responsible for freezing the device and preparing it to be
+put into a low-power state, but it must allow the PCI subsystem to perform all
+of the PCI-specific actions necessary for suspending the device.
+
+3.1.16. runtime_resume()
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+The runtime_resume() callback is specific to device runtime PM.  It is executed
+by the PM core's runtime PM framework when the device is about to be resumed
+(i.e. put into the full-power state and programmed to process I/O normally) at
+run time.
+
+This callback is responsible for restoring the normal functionality of the
+device after it has been put into the full-power state by the PCI subsystem.
+The device is expected to be able to process I/O in the usual way after
+runtime_resume() has returned.
+
+3.1.17. runtime_idle()
+^^^^^^^^^^^^^^^^^^^^^^
+
+The runtime_idle() callback is specific to device runtime PM.  It is executed
+by the PM core's runtime PM framework whenever it may be desirable to suspend
+the device according to the PM core's information.  In particular, it is
+automatically executed right after runtime_resume() has returned in case the
+resume of the device has happened as a result of a spurious event.
+
+This callback is optional, but if it is not implemented or if it returns 0, the
+PCI subsystem will call pm_runtime_suspend() for the device, which in turn will
+cause the driver's runtime_suspend() callback to be executed.
+
+3.1.18. Pointing Multiple Callback Pointers to One Routine
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Although in principle each of the callbacks described in the previous
+subsections can be defined as a separate function, it often is convenient to
+point two or more members of struct dev_pm_ops to the same routine.  There are
+a few convenience macros that can be used for this purpose.
+
+The SIMPLE_DEV_PM_OPS macro declares a struct dev_pm_ops object with one
+suspend routine pointed to by the .suspend(), .freeze(), and .poweroff()
+members and one resume routine pointed to by the .resume(), .thaw(), and
+.restore() members.  The other function pointers in this struct dev_pm_ops are
+unset.
+
+The UNIVERSAL_DEV_PM_OPS macro is similar to SIMPLE_DEV_PM_OPS, but it
+additionally sets the .runtime_resume() pointer to the same value as
+.resume() (and .thaw(), and .restore()) and the .runtime_suspend() pointer to
+the same value as .suspend() (and .freeze() and .poweroff()).
+
+The SET_SYSTEM_SLEEP_PM_OPS can be used inside of a declaration of struct
+dev_pm_ops to indicate that one suspend routine is to be pointed to by the
+.suspend(), .freeze(), and .poweroff() members and one resume routine is to
+be pointed to by the .resume(), .thaw(), and .restore() members.
+
+3.1.19. Driver Flags for Power Management
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The PM core allows device drivers to set flags that influence the handling of
+power management for the devices by the core itself and by middle layer code
+including the PCI bus type.  The flags should be set once at the driver probe
+time with the help of the dev_pm_set_driver_flags() function and they should not
+be updated directly afterwards.
+
+The DPM_FLAG_NEVER_SKIP flag prevents the PM core from using the direct-complete
+mechanism allowing device suspend/resume callbacks to be skipped if the device
+is in runtime suspend when the system suspend starts.  That also affects all of
+the ancestors of the device, so this flag should only be used if absolutely
+necessary.
+
+The DPM_FLAG_SMART_PREPARE flag instructs the PCI bus type to only return a
+positive value from pci_pm_prepare() if the ->prepare callback provided by the
+driver of the device returns a positive value.  That allows the driver to opt
+out from using the direct-complete mechanism dynamically.
+
+The DPM_FLAG_SMART_SUSPEND flag tells the PCI bus type that from the driver's
+perspective the device can be safely left in runtime suspend during system
+suspend.  That causes pci_pm_suspend(), pci_pm_freeze() and pci_pm_poweroff()
+to skip resuming the device from runtime suspend unless there are PCI-specific
+reasons for doing that.  Also, it causes pci_pm_suspend_late/noirq(),
+pci_pm_freeze_late/noirq() and pci_pm_poweroff_late/noirq() to return early
+if the device remains in runtime suspend in the beginning of the "late" phase
+of the system-wide transition under way.  Moreover, if the device is in
+runtime suspend in pci_pm_resume_noirq() or pci_pm_restore_noirq(), its runtime
+power management status will be changed to "active" (as it is going to be put
+into D0 going forward), but if it is in runtime suspend in pci_pm_thaw_noirq(),
+the function will set the power.direct_complete flag for it (to make the PM core
+skip the subsequent "thaw" callbacks for it) and return.
+
+Setting the DPM_FLAG_LEAVE_SUSPENDED flag means that the driver prefers the
+device to be left in suspend after system-wide transitions to the working state.
+This flag is checked by the PM core, but the PCI bus type informs the PM core
+which devices may be left in suspend from its perspective (that happens during
+the "noirq" phase of system-wide suspend and analogous transitions) and next it
+uses the dev_pm_may_skip_resume() helper to decide whether or not to return from
+pci_pm_resume_noirq() early, as the PM core will skip the remaining resume
+callbacks for the device during the transition under way and will set its
+runtime PM status to "suspended" if dev_pm_may_skip_resume() returns "true" for
+it.
+
+3.2. Device Runtime Power Management
+------------------------------------
+
+In addition to providing device power management callbacks PCI device drivers
+are responsible for controlling the runtime power management (runtime PM) of
+their devices.
+
+The PCI device runtime PM is optional, but it is recommended that PCI device
+drivers implement it at least in the cases where there is a reliable way of
+verifying that the device is not used (like when the network cable is detached
+from an Ethernet adapter or there are no devices attached to a USB controller).
+
+To support the PCI runtime PM the driver first needs to implement the
+runtime_suspend() and runtime_resume() callbacks.  It also may need to implement
+the runtime_idle() callback to prevent the device from being suspended again
+every time right after the runtime_resume() callback has returned
+(alternatively, the runtime_suspend() callback will have to check if the
+device should really be suspended and return -EAGAIN if that is not the case).
+
+The runtime PM of PCI devices is enabled by default by the PCI core.  PCI
+device drivers do not need to enable it and should not attempt to do so.
+However, it is blocked by pci_pm_init() that runs the pm_runtime_forbid()
+helper function.  In addition to that, the runtime PM usage counter of
+each PCI device is incremented by local_pci_probe() before executing the
+probe callback provided by the device's driver.
+
+If a PCI driver implements the runtime PM callbacks and intends to use the
+runtime PM framework provided by the PM core and the PCI subsystem, it needs
+to decrement the device's runtime PM usage counter in its probe callback
+function.  If it doesn't do that, the counter will always be different from
+zero for the device and it will never be runtime-suspended.  The simplest
+way to do that is by calling pm_runtime_put_noidle(), but if the driver
+wants to schedule an autosuspend right away, for example, it may call
+pm_runtime_put_autosuspend() instead for this purpose.  Generally, it
+just needs to call a function that decrements the devices usage counter
+from its probe routine to make runtime PM work for the device.
+
+It is important to remember that the driver's runtime_suspend() callback
+may be executed right after the usage counter has been decremented, because
+user space may already have caused the pm_runtime_allow() helper function
+unblocking the runtime PM of the device to run via sysfs, so the driver must
+be prepared to cope with that.
+
+The driver itself should not call pm_runtime_allow(), though.  Instead, it
+should let user space or some platform-specific code do that (user space can
+do it via sysfs as stated above), but it must be prepared to handle the
+runtime PM of the device correctly as soon as pm_runtime_allow() is called
+(which may happen at any time, even before the driver is loaded).
+
+When the driver's remove callback runs, it has to balance the decrementation
+of the device's runtime PM usage counter at the probe time.  For this reason,
+if it has decremented the counter in its probe callback, it must run
+pm_runtime_get_noresume() in its remove callback.  [Since the core carries
+out a runtime resume of the device and bumps up the device's usage counter
+before running the driver's remove callback, the runtime PM of the device
+is effectively disabled for the duration of the remove execution and all
+runtime PM helper functions incrementing the device's usage counter are
+then effectively equivalent to pm_runtime_get_noresume().]
+
+The runtime PM framework works by processing requests to suspend or resume
+devices, or to check if they are idle (in which cases it is reasonable to
+subsequently request that they be suspended).  These requests are represented
+by work items put into the power management workqueue, pm_wq.  Although there
+are a few situations in which power management requests are automatically
+queued by the PM core (for example, after processing a request to resume a
+device the PM core automatically queues a request to check if the device is
+idle), device drivers are generally responsible for queuing power management
+requests for their devices.  For this purpose they should use the runtime PM
+helper functions provided by the PM core, discussed in
+Documentation/power/runtime_pm.rst.
+
+Devices can also be suspended and resumed synchronously, without placing a
+request into pm_wq.  In the majority of cases this also is done by their
+drivers that use helper functions provided by the PM core for this purpose.
+
+For more information on the runtime PM of devices refer to
+Documentation/power/runtime_pm.rst.
+
+
+4. Resources
+============
+
+PCI Local Bus Specification, Rev. 3.0
+
+PCI Bus Power Management Interface Specification, Rev. 1.2
+
+Advanced Configuration and Power Interface (ACPI) Specification, Rev. 3.0b
+
+PCI Express Base Specification, Rev. 2.0
+
+Documentation/driver-api/pm/devices.rst
+
+Documentation/power/runtime_pm.rst
diff --git a/Documentation/power/pci.txt b/Documentation/power/pci.txt
deleted file mode 100644 (file)
index 8eaf9ee..0000000
+++ /dev/null
@@ -1,1094 +0,0 @@
-PCI Power Management
-
-Copyright (c) 2010 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
-
-An overview of concepts and the Linux kernel's interfaces related to PCI power
-management.  Based on previous work by Patrick Mochel <mochel@transmeta.com>
-(and others).
-
-This document only covers the aspects of power management specific to PCI
-devices.  For general description of the kernel's interfaces related to device
-power management refer to Documentation/driver-api/pm/devices.rst and
-Documentation/power/runtime_pm.txt.
-
----------------------------------------------------------------------------
-
-1. Hardware and Platform Support for PCI Power Management
-2. PCI Subsystem and Device Power Management
-3. PCI Device Drivers and Power Management
-4. Resources
-
-
-1. Hardware and Platform Support for PCI Power Management
-=========================================================
-
-1.1. Native and Platform-Based Power Management
------------------------------------------------
-In general, power management is a feature allowing one to save energy by putting
-devices into states in which they draw less power (low-power states) at the
-price of reduced functionality or performance.
-
-Usually, a device is put into a low-power state when it is underutilized or
-completely inactive.  However, when it is necessary to use the device once
-again, it has to be put back into the "fully functional" state (full-power
-state).  This may happen when there are some data for the device to handle or
-as a result of an external event requiring the device to be active, which may
-be signaled by the device itself.
-
-PCI devices may be put into low-power states in two ways, by using the device
-capabilities introduced by the PCI Bus Power Management Interface Specification,
-or with the help of platform firmware, such as an ACPI BIOS.  In the first
-approach, that is referred to as the native PCI power management (native PCI PM)
-in what follows, the device power state is changed as a result of writing a
-specific value into one of its standard configuration registers.  The second
-approach requires the platform firmware to provide special methods that may be
-used by the kernel to change the device's power state.
-
-Devices supporting the native PCI PM usually can generate wakeup signals called
-Power Management Events (PMEs) to let the kernel know about external events
-requiring the device to be active.  After receiving a PME the kernel is supposed
-to put the device that sent it into the full-power state.  However, the PCI Bus
-Power Management Interface Specification doesn't define any standard method of
-delivering the PME from the device to the CPU and the operating system kernel.
-It is assumed that the platform firmware will perform this task and therefore,
-even though a PCI device is set up to generate PMEs, it also may be necessary to
-prepare the platform firmware for notifying the CPU of the PMEs coming from the
-device (e.g. by generating interrupts).
-
-In turn, if the methods provided by the platform firmware are used for changing
-the power state of a device, usually the platform also provides a method for
-preparing the device to generate wakeup signals.  In that case, however, it
-often also is necessary to prepare the device for generating PMEs using the
-native PCI PM mechanism, because the method provided by the platform depends on
-that.
-
-Thus in many situations both the native and the platform-based power management
-mechanisms have to be used simultaneously to obtain the desired result.
-
-1.2. Native PCI Power Management
---------------------------------
-The PCI Bus Power Management Interface Specification (PCI PM Spec) was
-introduced between the PCI 2.1 and PCI 2.2 Specifications.  It defined a
-standard interface for performing various operations related to power
-management.
-
-The implementation of the PCI PM Spec is optional for conventional PCI devices,
-but it is mandatory for PCI Express devices.  If a device supports the PCI PM
-Spec, it has an 8 byte power management capability field in its PCI
-configuration space.  This field is used to describe and control the standard
-features related to the native PCI power management.
-
-The PCI PM Spec defines 4 operating states for devices (D0-D3) and for buses
-(B0-B3).  The higher the number, the less power is drawn by the device or bus
-in that state.  However, the higher the number, the longer the latency for
-the device or bus to return to the full-power state (D0 or B0, respectively).
-
-There are two variants of the D3 state defined by the specification.  The first
-one is D3hot, referred to as the software accessible D3, because devices can be
-programmed to go into it.  The second one, D3cold, is the state that PCI devices
-are in when the supply voltage (Vcc) is removed from them.  It is not possible
-to program a PCI device to go into D3cold, although there may be a programmable
-interface for putting the bus the device is on into a state in which Vcc is
-removed from all devices on the bus.
-
-PCI bus power management, however, is not supported by the Linux kernel at the
-time of this writing and therefore it is not covered by this document.
-
-Note that every PCI device can be in the full-power state (D0) or in D3cold,
-regardless of whether or not it implements the PCI PM Spec.  In addition to
-that, if the PCI PM Spec is implemented by the device, it must support D3hot
-as well as D0.  The support for the D1 and D2 power states is optional.
-
-PCI devices supporting the PCI PM Spec can be programmed to go to any of the
-supported low-power states (except for D3cold).  While in D1-D3hot the
-standard configuration registers of the device must be accessible to software
-(i.e. the device is required to respond to PCI configuration accesses), although
-its I/O and memory spaces are then disabled.  This allows the device to be
-programmatically put into D0.  Thus the kernel can switch the device back and
-forth between D0 and the supported low-power states (except for D3cold) and the
-possible power state transitions the device can undergo are the following:
-
-+----------------------------+
-| Current State | New State  |
-+----------------------------+
-| D0            | D1, D2, D3 |
-+----------------------------+
-| D1            | D2, D3     |
-+----------------------------+
-| D2            | D3         |
-+----------------------------+
-| D1, D2, D3    | D0         |
-+----------------------------+
-
-The transition from D3cold to D0 occurs when the supply voltage is provided to
-the device (i.e. power is restored).  In that case the device returns to D0 with
-a full power-on reset sequence and the power-on defaults are restored to the
-device by hardware just as at initial power up.
-
-PCI devices supporting the PCI PM Spec can be programmed to generate PMEs
-while in a low-power state (D1-D3), but they are not required to be capable
-of generating PMEs from all supported low-power states.  In particular, the
-capability of generating PMEs from D3cold is optional and depends on the
-presence of additional voltage (3.3Vaux) allowing the device to remain
-sufficiently active to generate a wakeup signal.
-
-1.3. ACPI Device Power Management
----------------------------------
-The platform firmware support for the power management of PCI devices is
-system-specific.  However, if the system in question is compliant with the
-Advanced Configuration and Power Interface (ACPI) Specification, like the
-majority of x86-based systems, it is supposed to implement device power
-management interfaces defined by the ACPI standard.
-
-For this purpose the ACPI BIOS provides special functions called "control
-methods" that may be executed by the kernel to perform specific tasks, such as
-putting a device into a low-power state.  These control methods are encoded
-using special byte-code language called the ACPI Machine Language (AML) and
-stored in the machine's BIOS.  The kernel loads them from the BIOS and executes
-them as needed using an AML interpreter that translates the AML byte code into
-computations and memory or I/O space accesses.  This way, in theory, a BIOS
-writer can provide the kernel with a means to perform actions depending
-on the system design in a system-specific fashion.
-
-ACPI control methods may be divided into global control methods, that are not
-associated with any particular devices, and device control methods, that have
-to be defined separately for each device supposed to be handled with the help of
-the platform.  This means, in particular, that ACPI device control methods can
-only be used to handle devices that the BIOS writer knew about in advance.  The
-ACPI methods used for device power management fall into that category.
-
-The ACPI specification assumes that devices can be in one of four power states
-labeled as D0, D1, D2, and D3 that roughly correspond to the native PCI PM
-D0-D3 states (although the difference between D3hot and D3cold is not taken
-into account by ACPI).  Moreover, for each power state of a device there is a
-set of power resources that have to be enabled for the device to be put into
-that state.  These power resources are controlled (i.e. enabled or disabled)
-with the help of their own control methods, _ON and _OFF, that have to be
-defined individually for each of them.
-
-To put a device into the ACPI power state Dx (where x is a number between 0 and
-3 inclusive) the kernel is supposed to (1) enable the power resources required
-by the device in this state using their _ON control methods and (2) execute the
-_PSx control method defined for the device.  In addition to that, if the device
-is going to be put into a low-power state (D1-D3) and is supposed to generate
-wakeup signals from that state, the _DSW (or _PSW, replaced with _DSW by ACPI
-3.0) control method defined for it has to be executed before _PSx.  Power
-resources that are not required by the device in the target power state and are
-not required any more by any other device should be disabled (by executing their
-_OFF control methods).  If the current power state of the device is D3, it can
-only be put into D0 this way.
-
-However, quite often the power states of devices are changed during a
-system-wide transition into a sleep state or back into the working state.  ACPI
-defines four system sleep states, S1, S2, S3, and S4, and denotes the system
-working state as S0.  In general, the target system sleep (or working) state
-determines the highest power (lowest number) state the device can be put
-into and the kernel is supposed to obtain this information by executing the
-device's _SxD control method (where x is a number between 0 and 4 inclusive).
-If the device is required to wake up the system from the target sleep state, the
-lowest power (highest number) state it can be put into is also determined by the
-target state of the system.  The kernel is then supposed to use the device's
-_SxW control method to obtain the number of that state.  It also is supposed to
-use the device's _PRW control method to learn which power resources need to be
-enabled for the device to be able to generate wakeup signals.
-
-1.4. Wakeup Signaling
----------------------
-Wakeup signals generated by PCI devices, either as native PCI PMEs, or as
-a result of the execution of the _DSW (or _PSW) ACPI control method before
-putting the device into a low-power state, have to be caught and handled as
-appropriate.  If they are sent while the system is in the working state
-(ACPI S0), they should be translated into interrupts so that the kernel can
-put the devices generating them into the full-power state and take care of the
-events that triggered them.  In turn, if they are sent while the system is
-sleeping, they should cause the system's core logic to trigger wakeup.
-
-On ACPI-based systems wakeup signals sent by conventional PCI devices are
-converted into ACPI General-Purpose Events (GPEs) which are hardware signals
-from the system core logic generated in response to various events that need to
-be acted upon.  Every GPE is associated with one or more sources of potentially
-interesting events.  In particular, a GPE may be associated with a PCI device
-capable of signaling wakeup.  The information on the connections between GPEs
-and event sources is recorded in the system's ACPI BIOS from where it can be
-read by the kernel.
-
-If a PCI device known to the system's ACPI BIOS signals wakeup, the GPE
-associated with it (if there is one) is triggered.  The GPEs associated with PCI
-bridges may also be triggered in response to a wakeup signal from one of the
-devices below the bridge (this also is the case for root bridges) and, for
-example, native PCI PMEs from devices unknown to the system's ACPI BIOS may be
-handled this way.
-
-A GPE may be triggered when the system is sleeping (i.e. when it is in one of
-the ACPI S1-S4 states), in which case system wakeup is started by its core logic
-(the device that was the source of the signal causing the system wakeup to occur
-may be identified later).  The GPEs used in such situations are referred to as
-wakeup GPEs.
-
-Usually, however, GPEs are also triggered when the system is in the working
-state (ACPI S0) and in that case the system's core logic generates a System
-Control Interrupt (SCI) to notify the kernel of the event.  Then, the SCI
-handler identifies the GPE that caused the interrupt to be generated which,
-in turn, allows the kernel to identify the source of the event (that may be
-a PCI device signaling wakeup).  The GPEs used for notifying the kernel of
-events occurring while the system is in the working state are referred to as
-runtime GPEs.
-
-Unfortunately, there is no standard way of handling wakeup signals sent by
-conventional PCI devices on systems that are not ACPI-based, but there is one
-for PCI Express devices.  Namely, the PCI Express Base Specification introduced
-a native mechanism for converting native PCI PMEs into interrupts generated by
-root ports.  For conventional PCI devices native PMEs are out-of-band, so they
-are routed separately and they need not pass through bridges (in principle they
-may be routed directly to the system's core logic), but for PCI Express devices
-they are in-band messages that have to pass through the PCI Express hierarchy,
-including the root port on the path from the device to the Root Complex.  Thus
-it was possible to introduce a mechanism by which a root port generates an
-interrupt whenever it receives a PME message from one of the devices below it.
-The PCI Express Requester ID of the device that sent the PME message is then
-recorded in one of the root port's configuration registers from where it may be
-read by the interrupt handler allowing the device to be identified.  [PME
-messages sent by PCI Express endpoints integrated with the Root Complex don't
-pass through root ports, but instead they cause a Root Complex Event Collector
-(if there is one) to generate interrupts.]
-
-In principle the native PCI Express PME signaling may also be used on ACPI-based
-systems along with the GPEs, but to use it the kernel has to ask the system's
-ACPI BIOS to release control of root port configuration registers.  The ACPI
-BIOS, however, is not required to allow the kernel to control these registers
-and if it doesn't do that, the kernel must not modify their contents.  Of course
-the native PCI Express PME signaling cannot be used by the kernel in that case.
-
-
-2. PCI Subsystem and Device Power Management
-============================================
-
-2.1. Device Power Management Callbacks
---------------------------------------
-The PCI Subsystem participates in the power management of PCI devices in a
-number of ways.  First of all, it provides an intermediate code layer between
-the device power management core (PM core) and PCI device drivers.
-Specifically, the pm field of the PCI subsystem's struct bus_type object,
-pci_bus_type, points to a struct dev_pm_ops object, pci_dev_pm_ops, containing
-pointers to several device power management callbacks:
-
-const struct dev_pm_ops pci_dev_pm_ops = {
-       .prepare = pci_pm_prepare,
-       .complete = pci_pm_complete,
-       .suspend = pci_pm_suspend,
-       .resume = pci_pm_resume,
-       .freeze = pci_pm_freeze,
-       .thaw = pci_pm_thaw,
-       .poweroff = pci_pm_poweroff,
-       .restore = pci_pm_restore,
-       .suspend_noirq = pci_pm_suspend_noirq,
-       .resume_noirq = pci_pm_resume_noirq,
-       .freeze_noirq = pci_pm_freeze_noirq,
-       .thaw_noirq = pci_pm_thaw_noirq,
-       .poweroff_noirq = pci_pm_poweroff_noirq,
-       .restore_noirq = pci_pm_restore_noirq,
-       .runtime_suspend = pci_pm_runtime_suspend,
-       .runtime_resume = pci_pm_runtime_resume,
-       .runtime_idle = pci_pm_runtime_idle,
-};
-
-These callbacks are executed by the PM core in various situations related to
-device power management and they, in turn, execute power management callbacks
-provided by PCI device drivers.  They also perform power management operations
-involving some standard configuration registers of PCI devices that device
-drivers need not know or care about.
-
-The structure representing a PCI device, struct pci_dev, contains several fields
-that these callbacks operate on:
-
-struct pci_dev {
-       ...
-       pci_power_t     current_state;  /* Current operating state. */
-       int             pm_cap;         /* PM capability offset in the
-                                          configuration space */
-       unsigned int    pme_support:5;  /* Bitmask of states from which PME#
-                                          can be generated */
-       unsigned int    pme_interrupt:1;/* Is native PCIe PME signaling used? */
-       unsigned int    d1_support:1;   /* Low power state D1 is supported */
-       unsigned int    d2_support:1;   /* Low power state D2 is supported */
-       unsigned int    no_d1d2:1;      /* D1 and D2 are forbidden */
-       unsigned int    wakeup_prepared:1;  /* Device prepared for wake up */
-       unsigned int    d3_delay;       /* D3->D0 transition time in ms */
-       ...
-};
-
-They also indirectly use some fields of the struct device that is embedded in
-struct pci_dev.
-
-2.2. Device Initialization
---------------------------
-The PCI subsystem's first task related to device power management is to
-prepare the device for power management and initialize the fields of struct
-pci_dev used for this purpose.  This happens in two functions defined in
-drivers/pci/pci.c, pci_pm_init() and platform_pci_wakeup_init().
-
-The first of these functions checks if the device supports native PCI PM
-and if that's the case the offset of its power management capability structure
-in the configuration space is stored in the pm_cap field of the device's struct
-pci_dev object.  Next, the function checks which PCI low-power states are
-supported by the device and from which low-power states the device can generate
-native PCI PMEs.  The power management fields of the device's struct pci_dev and
-the struct device embedded in it are updated accordingly and the generation of
-PMEs by the device is disabled.
-
-The second function checks if the device can be prepared to signal wakeup with
-the help of the platform firmware, such as the ACPI BIOS.  If that is the case,
-the function updates the wakeup fields in struct device embedded in the
-device's struct pci_dev and uses the firmware-provided method to prevent the
-device from signaling wakeup.
-
-At this point the device is ready for power management.  For driverless devices,
-however, this functionality is limited to a few basic operations carried out
-during system-wide transitions to a sleep state and back to the working state.
-
-2.3. Runtime Device Power Management
-------------------------------------
-The PCI subsystem plays a vital role in the runtime power management of PCI
-devices.  For this purpose it uses the general runtime power management
-(runtime PM) framework described in Documentation/power/runtime_pm.txt.
-Namely, it provides subsystem-level callbacks:
-
-       pci_pm_runtime_suspend()
-       pci_pm_runtime_resume()
-       pci_pm_runtime_idle()
-
-that are executed by the core runtime PM routines.  It also implements the
-entire mechanics necessary for handling runtime wakeup signals from PCI devices
-in low-power states, which at the time of this writing works for both the native
-PCI Express PME signaling and the ACPI GPE-based wakeup signaling described in
-Section 1.
-
-First, a PCI device is put into a low-power state, or suspended, with the help
-of pm_schedule_suspend() or pm_runtime_suspend() which for PCI devices call
-pci_pm_runtime_suspend() to do the actual job.  For this to work, the device's
-driver has to provide a pm->runtime_suspend() callback (see below), which is
-run by pci_pm_runtime_suspend() as the first action.  If the driver's callback
-returns successfully, the device's standard configuration registers are saved,
-the device is prepared to generate wakeup signals and, finally, it is put into
-the target low-power state.
-
-The low-power state to put the device into is the lowest-power (highest number)
-state from which it can signal wakeup.  The exact method of signaling wakeup is
-system-dependent and is determined by the PCI subsystem on the basis of the
-reported capabilities of the device and the platform firmware.  To prepare the
-device for signaling wakeup and put it into the selected low-power state, the
-PCI subsystem can use the platform firmware as well as the device's native PCI
-PM capabilities, if supported.
-
-It is expected that the device driver's pm->runtime_suspend() callback will
-not attempt to prepare the device for signaling wakeup or to put it into a
-low-power state.  The driver ought to leave these tasks to the PCI subsystem
-that has all of the information necessary to perform them.
-
-A suspended device is brought back into the "active" state, or resumed,
-with the help of pm_request_resume() or pm_runtime_resume() which both call
-pci_pm_runtime_resume() for PCI devices.  Again, this only works if the device's
-driver provides a pm->runtime_resume() callback (see below).  However, before
-the driver's callback is executed, pci_pm_runtime_resume() brings the device
-back into the full-power state, prevents it from signaling wakeup while in that
-state and restores its standard configuration registers.  Thus the driver's
-callback need not worry about the PCI-specific aspects of the device resume.
-
-Note that generally pci_pm_runtime_resume() may be called in two different
-situations.  First, it may be called at the request of the device's driver, for
-example if there are some data for it to process.  Second, it may be called
-as a result of a wakeup signal from the device itself (this sometimes is
-referred to as "remote wakeup").  Of course, for this purpose the wakeup signal
-is handled in one of the ways described in Section 1 and finally converted into
-a notification for the PCI subsystem after the source device has been
-identified.
-
-The pci_pm_runtime_idle() function, called for PCI devices by pm_runtime_idle()
-and pm_request_idle(), executes the device driver's pm->runtime_idle()
-callback, if defined, and if that callback doesn't return error code (or is not
-present at all), suspends the device with the help of pm_runtime_suspend().
-Sometimes pci_pm_runtime_idle() is called automatically by the PM core (for
-example, it is called right after the device has just been resumed), in which
-cases it is expected to suspend the device if that makes sense.  Usually,
-however, the PCI subsystem doesn't really know if the device really can be
-suspended, so it lets the device's driver decide by running its
-pm->runtime_idle() callback.
-
-2.4. System-Wide Power Transitions
-----------------------------------
-There are a few different types of system-wide power transitions, described in
-Documentation/driver-api/pm/devices.rst.  Each of them requires devices to be handled
-in a specific way and the PM core executes subsystem-level power management
-callbacks for this purpose.  They are executed in phases such that each phase
-involves executing the same subsystem-level callback for every device belonging
-to the given subsystem before the next phase begins.  These phases always run
-after tasks have been frozen.
-
-2.4.1. System Suspend
-
-When the system is going into a sleep state in which the contents of memory will
-be preserved, such as one of the ACPI sleep states S1-S3, the phases are:
-
-       prepare, suspend, suspend_noirq.
-
-The following PCI bus type's callbacks, respectively, are used in these phases:
-
-       pci_pm_prepare()
-       pci_pm_suspend()
-       pci_pm_suspend_noirq()
-
-The pci_pm_prepare() routine first puts the device into the "fully functional"
-state with the help of pm_runtime_resume().  Then, it executes the device
-driver's pm->prepare() callback if defined (i.e. if the driver's struct
-dev_pm_ops object is present and the prepare pointer in that object is valid).
-
-The pci_pm_suspend() routine first checks if the device's driver implements
-legacy PCI suspend routines (see Section 3), in which case the driver's legacy
-suspend callback is executed, if present, and its result is returned.  Next, if
-the device's driver doesn't provide a struct dev_pm_ops object (containing
-pointers to the driver's callbacks), pci_pm_default_suspend() is called, which
-simply turns off the device's bus master capability and runs
-pcibios_disable_device() to disable it, unless the device is a bridge (PCI
-bridges are ignored by this routine).  Next, the device driver's pm->suspend()
-callback is executed, if defined, and its result is returned if it fails.
-Finally, pci_fixup_device() is called to apply hardware suspend quirks related
-to the device if necessary.
-
-Note that the suspend phase is carried out asynchronously for PCI devices, so
-the pci_pm_suspend() callback may be executed in parallel for any pair of PCI
-devices that don't depend on each other in a known way (i.e. none of the paths
-in the device tree from the root bridge to a leaf device contains both of them).
-
-The pci_pm_suspend_noirq() routine is executed after suspend_device_irqs() has
-been called, which means that the device driver's interrupt handler won't be
-invoked while this routine is running.  It first checks if the device's driver
-implements legacy PCI suspends routines (Section 3), in which case the legacy
-late suspend routine is called and its result is returned (the standard
-configuration registers of the device are saved if the driver's callback hasn't
-done that).  Second, if the device driver's struct dev_pm_ops object is not
-present, the device's standard configuration registers are saved and the routine
-returns success.  Otherwise the device driver's pm->suspend_noirq() callback is
-executed, if present, and its result is returned if it fails.  Next, if the
-device's standard configuration registers haven't been saved yet (one of the
-device driver's callbacks executed before might do that), pci_pm_suspend_noirq()
-saves them, prepares the device to signal wakeup (if necessary) and puts it into
-a low-power state.
-
-The low-power state to put the device into is the lowest-power (highest number)
-state from which it can signal wakeup while the system is in the target sleep
-state.  Just like in the runtime PM case described above, the mechanism of
-signaling wakeup is system-dependent and determined by the PCI subsystem, which
-is also responsible for preparing the device to signal wakeup from the system's
-target sleep state as appropriate.
-
-PCI device drivers (that don't implement legacy power management callbacks) are
-generally not expected to prepare devices for signaling wakeup or to put them
-into low-power states.  However, if one of the driver's suspend callbacks
-(pm->suspend() or pm->suspend_noirq()) saves the device's standard configuration
-registers, pci_pm_suspend_noirq() will assume that the device has been prepared
-to signal wakeup and put into a low-power state by the driver (the driver is
-then assumed to have used the helper functions provided by the PCI subsystem for
-this purpose).  PCI device drivers are not encouraged to do that, but in some
-rare cases doing that in the driver may be the optimum approach.
-
-2.4.2. System Resume
-
-When the system is undergoing a transition from a sleep state in which the
-contents of memory have been preserved, such as one of the ACPI sleep states
-S1-S3, into the working state (ACPI S0), the phases are:
-
-       resume_noirq, resume, complete.
-
-The following PCI bus type's callbacks, respectively, are executed in these
-phases:
-
-       pci_pm_resume_noirq()
-       pci_pm_resume()
-       pci_pm_complete()
-
-The pci_pm_resume_noirq() routine first puts the device into the full-power
-state, restores its standard configuration registers and applies early resume
-hardware quirks related to the device, if necessary.  This is done
-unconditionally, regardless of whether or not the device's driver implements
-legacy PCI power management callbacks (this way all PCI devices are in the
-full-power state and their standard configuration registers have been restored
-when their interrupt handlers are invoked for the first time during resume,
-which allows the kernel to avoid problems with the handling of shared interrupts
-by drivers whose devices are still suspended).  If legacy PCI power management
-callbacks (see Section 3) are implemented by the device's driver, the legacy
-early resume callback is executed and its result is returned.  Otherwise, the
-device driver's pm->resume_noirq() callback is executed, if defined, and its
-result is returned.
-
-The pci_pm_resume() routine first checks if the device's standard configuration
-registers have been restored and restores them if that's not the case (this
-only is necessary in the error path during a failing suspend).  Next, resume
-hardware quirks related to the device are applied, if necessary, and if the
-device's driver implements legacy PCI power management callbacks (see
-Section 3), the driver's legacy resume callback is executed and its result is
-returned.  Otherwise, the device's wakeup signaling mechanisms are blocked and
-its driver's pm->resume() callback is executed, if defined (the callback's
-result is then returned).
-
-The resume phase is carried out asynchronously for PCI devices, like the
-suspend phase described above, which means that if two PCI devices don't depend
-on each other in a known way, the pci_pm_resume() routine may be executed for
-the both of them in parallel.
-
-The pci_pm_complete() routine only executes the device driver's pm->complete()
-callback, if defined.
-
-2.4.3. System Hibernation
-
-System hibernation is more complicated than system suspend, because it requires
-a system image to be created and written into a persistent storage medium.  The
-image is created atomically and all devices are quiesced, or frozen, before that
-happens.
-
-The freezing of devices is carried out after enough memory has been freed (at
-the time of this writing the image creation requires at least 50% of system RAM
-to be free) in the following three phases:
-
-       prepare, freeze, freeze_noirq
-
-that correspond to the PCI bus type's callbacks:
-
-       pci_pm_prepare()
-       pci_pm_freeze()
-       pci_pm_freeze_noirq()
-
-This means that the prepare phase is exactly the same as for system suspend.
-The other two phases, however, are different.
-
-The pci_pm_freeze() routine is quite similar to pci_pm_suspend(), but it runs
-the device driver's pm->freeze() callback, if defined, instead of pm->suspend(),
-and it doesn't apply the suspend-related hardware quirks.  It is executed
-asynchronously for different PCI devices that don't depend on each other in a
-known way.
-
-The pci_pm_freeze_noirq() routine, in turn, is similar to
-pci_pm_suspend_noirq(), but it calls the device driver's pm->freeze_noirq()
-routine instead of pm->suspend_noirq().  It also doesn't attempt to prepare the
-device for signaling wakeup and put it into a low-power state.  Still, it saves
-the device's standard configuration registers if they haven't been saved by one
-of the driver's callbacks.
-
-Once the image has been created, it has to be saved.  However, at this point all
-devices are frozen and they cannot handle I/O, while their ability to handle
-I/O is obviously necessary for the image saving.  Thus they have to be brought
-back to the fully functional state and this is done in the following phases:
-
-       thaw_noirq, thaw, complete
-
-using the following PCI bus type's callbacks:
-
-       pci_pm_thaw_noirq()
-       pci_pm_thaw()
-       pci_pm_complete()
-
-respectively.
-
-The first of them, pci_pm_thaw_noirq(), is analogous to pci_pm_resume_noirq(),
-but it doesn't put the device into the full power state and doesn't attempt to
-restore its standard configuration registers.  It also executes the device
-driver's pm->thaw_noirq() callback, if defined, instead of pm->resume_noirq().
-
-The pci_pm_thaw() routine is similar to pci_pm_resume(), but it runs the device
-driver's pm->thaw() callback instead of pm->resume().  It is executed
-asynchronously for different PCI devices that don't depend on each other in a
-known way.
-
-The complete phase it the same as for system resume.
-
-After saving the image, devices need to be powered down before the system can
-enter the target sleep state (ACPI S4 for ACPI-based systems).  This is done in
-three phases:
-
-       prepare, poweroff, poweroff_noirq
-
-where the prepare phase is exactly the same as for system suspend.  The other
-two phases are analogous to the suspend and suspend_noirq phases, respectively.
-The PCI subsystem-level callbacks they correspond to
-
-       pci_pm_poweroff()
-       pci_pm_poweroff_noirq()
-
-work in analogy with pci_pm_suspend() and pci_pm_poweroff_noirq(), respectively,
-although they don't attempt to save the device's standard configuration
-registers.
-
-2.4.4. System Restore
-
-System restore requires a hibernation image to be loaded into memory and the
-pre-hibernation memory contents to be restored before the pre-hibernation system
-activity can be resumed.
-
-As described in Documentation/driver-api/pm/devices.rst, the hibernation image is loaded
-into memory by a fresh instance of the kernel, called the boot kernel, which in
-turn is loaded and run by a boot loader in the usual way.  After the boot kernel
-has loaded the image, it needs to replace its own code and data with the code
-and data of the "hibernated" kernel stored within the image, called the image
-kernel.  For this purpose all devices are frozen just like before creating
-the image during hibernation, in the
-
-       prepare, freeze, freeze_noirq
-
-phases described above.  However, the devices affected by these phases are only
-those having drivers in the boot kernel; other devices will still be in whatever
-state the boot loader left them.
-
-Should the restoration of the pre-hibernation memory contents fail, the boot
-kernel would go through the "thawing" procedure described above, using the
-thaw_noirq, thaw, and complete phases (that will only affect the devices having
-drivers in the boot kernel), and then continue running normally.
-
-If the pre-hibernation memory contents are restored successfully, which is the
-usual situation, control is passed to the image kernel, which then becomes
-responsible for bringing the system back to the working state.  To achieve this,
-it must restore the devices' pre-hibernation functionality, which is done much
-like waking up from the memory sleep state, although it involves different
-phases:
-
-       restore_noirq, restore, complete
-
-The first two of these are analogous to the resume_noirq and resume phases
-described above, respectively, and correspond to the following PCI subsystem
-callbacks:
-
-       pci_pm_restore_noirq()
-       pci_pm_restore()
-
-These callbacks work in analogy with pci_pm_resume_noirq() and pci_pm_resume(),
-respectively, but they execute the device driver's pm->restore_noirq() and
-pm->restore() callbacks, if available.
-
-The complete phase is carried out in exactly the same way as during system
-resume.
-
-
-3. PCI Device Drivers and Power Management
-==========================================
-
-3.1. Power Management Callbacks
--------------------------------
-PCI device drivers participate in power management by providing callbacks to be
-executed by the PCI subsystem's power management routines described above and by
-controlling the runtime power management of their devices.
-
-At the time of this writing there are two ways to define power management
-callbacks for a PCI device driver, the recommended one, based on using a
-dev_pm_ops structure described in Documentation/driver-api/pm/devices.rst, and the
-"legacy" one, in which the .suspend(), .suspend_late(), .resume_early(), and
-.resume() callbacks from struct pci_driver are used.  The legacy approach,
-however, doesn't allow one to define runtime power management callbacks and is
-not really suitable for any new drivers.  Therefore it is not covered by this
-document (refer to the source code to learn more about it).
-
-It is recommended that all PCI device drivers define a struct dev_pm_ops object
-containing pointers to power management (PM) callbacks that will be executed by
-the PCI subsystem's PM routines in various circumstances.  A pointer to the
-driver's struct dev_pm_ops object has to be assigned to the driver.pm field in
-its struct pci_driver object.  Once that has happened, the "legacy" PM callbacks
-in struct pci_driver are ignored (even if they are not NULL).
-
-The PM callbacks in struct dev_pm_ops are not mandatory and if they are not
-defined (i.e. the respective fields of struct dev_pm_ops are unset) the PCI
-subsystem will handle the device in a simplified default manner.  If they are
-defined, though, they are expected to behave as described in the following
-subsections.
-
-3.1.1. prepare()
-
-The prepare() callback is executed during system suspend, during hibernation
-(when a hibernation image is about to be created), during power-off after
-saving a hibernation image and during system restore, when a hibernation image
-has just been loaded into memory.
-
-This callback is only necessary if the driver's device has children that in
-general may be registered at any time.  In that case the role of the prepare()
-callback is to prevent new children of the device from being registered until
-one of the resume_noirq(), thaw_noirq(), or restore_noirq() callbacks is run.
-
-In addition to that the prepare() callback may carry out some operations
-preparing the device to be suspended, although it should not allocate memory
-(if additional memory is required to suspend the device, it has to be
-preallocated earlier, for example in a suspend/hibernate notifier as described
-in Documentation/driver-api/pm/notifiers.rst).
-
-3.1.2. suspend()
-
-The suspend() callback is only executed during system suspend, after prepare()
-callbacks have been executed for all devices in the system.
-
-This callback is expected to quiesce the device and prepare it to be put into a
-low-power state by the PCI subsystem.  It is not required (in fact it even is
-not recommended) that a PCI driver's suspend() callback save the standard
-configuration registers of the device, prepare it for waking up the system, or
-put it into a low-power state.  All of these operations can very well be taken
-care of by the PCI subsystem, without the driver's participation.
-
-However, in some rare case it is convenient to carry out these operations in
-a PCI driver.  Then, pci_save_state(), pci_prepare_to_sleep(), and
-pci_set_power_state() should be used to save the device's standard configuration
-registers, to prepare it for system wakeup (if necessary), and to put it into a
-low-power state, respectively.  Moreover, if the driver calls pci_save_state(),
-the PCI subsystem will not execute either pci_prepare_to_sleep(), or
-pci_set_power_state() for its device, so the driver is then responsible for
-handling the device as appropriate.
-
-While the suspend() callback is being executed, the driver's interrupt handler
-can be invoked to handle an interrupt from the device, so all suspend-related
-operations relying on the driver's ability to handle interrupts should be
-carried out in this callback.
-
-3.1.3. suspend_noirq()
-
-The suspend_noirq() callback is only executed during system suspend, after
-suspend() callbacks have been executed for all devices in the system and
-after device interrupts have been disabled by the PM core.
-
-The difference between suspend_noirq() and suspend() is that the driver's
-interrupt handler will not be invoked while suspend_noirq() is running.  Thus
-suspend_noirq() can carry out operations that would cause race conditions to
-arise if they were performed in suspend().
-
-3.1.4. freeze()
-
-The freeze() callback is hibernation-specific and is executed in two situations,
-during hibernation, after prepare() callbacks have been executed for all devices
-in preparation for the creation of a system image, and during restore,
-after a system image has been loaded into memory from persistent storage and the
-prepare() callbacks have been executed for all devices.
-
-The role of this callback is analogous to the role of the suspend() callback
-described above.  In fact, they only need to be different in the rare cases when
-the driver takes the responsibility for putting the device into a low-power
-state.
-
-In that cases the freeze() callback should not prepare the device system wakeup
-or put it into a low-power state.  Still, either it or freeze_noirq() should
-save the device's standard configuration registers using pci_save_state().
-
-3.1.5. freeze_noirq()
-
-The freeze_noirq() callback is hibernation-specific.  It is executed during
-hibernation, after prepare() and freeze() callbacks have been executed for all
-devices in preparation for the creation of a system image, and during restore,
-after a system image has been loaded into memory and after prepare() and
-freeze() callbacks have been executed for all devices.  It is always executed
-after device interrupts have been disabled by the PM core.
-
-The role of this callback is analogous to the role of the suspend_noirq()
-callback described above and it very rarely is necessary to define
-freeze_noirq().
-
-The difference between freeze_noirq() and freeze() is analogous to the
-difference between suspend_noirq() and suspend().
-
-3.1.6. poweroff()
-
-The poweroff() callback is hibernation-specific.  It is executed when the system
-is about to be powered off after saving a hibernation image to a persistent
-storage.  prepare() callbacks are executed for all devices before poweroff() is
-called.
-
-The role of this callback is analogous to the role of the suspend() and freeze()
-callbacks described above, although it does not need to save the contents of
-the device's registers.  In particular, if the driver wants to put the device
-into a low-power state itself instead of allowing the PCI subsystem to do that,
-the poweroff() callback should use pci_prepare_to_sleep() and
-pci_set_power_state() to prepare the device for system wakeup and to put it
-into a low-power state, respectively, but it need not save the device's standard
-configuration registers.
-
-3.1.7. poweroff_noirq()
-
-The poweroff_noirq() callback is hibernation-specific.  It is executed after
-poweroff() callbacks have been executed for all devices in the system.
-
-The role of this callback is analogous to the role of the suspend_noirq() and
-freeze_noirq() callbacks described above, but it does not need to save the
-contents of the device's registers.
-
-The difference between poweroff_noirq() and poweroff() is analogous to the
-difference between suspend_noirq() and suspend().
-
-3.1.8. resume_noirq()
-
-The resume_noirq() callback is only executed during system resume, after the
-PM core has enabled the non-boot CPUs.  The driver's interrupt handler will not
-be invoked while resume_noirq() is running, so this callback can carry out
-operations that might race with the interrupt handler.
-
-Since the PCI subsystem unconditionally puts all devices into the full power
-state in the resume_noirq phase of system resume and restores their standard
-configuration registers, resume_noirq() is usually not necessary.  In general
-it should only be used for performing operations that would lead to race
-conditions if carried out by resume().
-
-3.1.9. resume()
-
-The resume() callback is only executed during system resume, after
-resume_noirq() callbacks have been executed for all devices in the system and
-device interrupts have been enabled by the PM core.
-
-This callback is responsible for restoring the pre-suspend configuration of the
-device and bringing it back to the fully functional state.  The device should be
-able to process I/O in a usual way after resume() has returned.
-
-3.1.10. thaw_noirq()
-
-The thaw_noirq() callback is hibernation-specific.  It is executed after a
-system image has been created and the non-boot CPUs have been enabled by the PM
-core, in the thaw_noirq phase of hibernation.  It also may be executed if the
-loading of a hibernation image fails during system restore (it is then executed
-after enabling the non-boot CPUs).  The driver's interrupt handler will not be
-invoked while thaw_noirq() is running.
-
-The role of this callback is analogous to the role of resume_noirq().  The
-difference between these two callbacks is that thaw_noirq() is executed after
-freeze() and freeze_noirq(), so in general it does not need to modify the
-contents of the device's registers.
-
-3.1.11. thaw()
-
-The thaw() callback is hibernation-specific.  It is executed after thaw_noirq()
-callbacks have been executed for all devices in the system and after device
-interrupts have been enabled by the PM core.
-
-This callback is responsible for restoring the pre-freeze configuration of
-the device, so that it will work in a usual way after thaw() has returned.
-
-3.1.12. restore_noirq()
-
-The restore_noirq() callback is hibernation-specific.  It is executed in the
-restore_noirq phase of hibernation, when the boot kernel has passed control to
-the image kernel and the non-boot CPUs have been enabled by the image kernel's
-PM core.
-
-This callback is analogous to resume_noirq() with the exception that it cannot
-make any assumption on the previous state of the device, even if the BIOS (or
-generally the platform firmware) is known to preserve that state over a
-suspend-resume cycle.
-
-For the vast majority of PCI device drivers there is no difference between
-resume_noirq() and restore_noirq().
-
-3.1.13. restore()
-
-The restore() callback is hibernation-specific.  It is executed after
-restore_noirq() callbacks have been executed for all devices in the system and
-after the PM core has enabled device drivers' interrupt handlers to be invoked.
-
-This callback is analogous to resume(), just like restore_noirq() is analogous
-to resume_noirq().  Consequently, the difference between restore_noirq() and
-restore() is analogous to the difference between resume_noirq() and resume().
-
-For the vast majority of PCI device drivers there is no difference between
-resume() and restore().
-
-3.1.14. complete()
-
-The complete() callback is executed in the following situations:
-  - during system resume, after resume() callbacks have been executed for all
-    devices,
-  - during hibernation, before saving the system image, after thaw() callbacks
-    have been executed for all devices,
-  - during system restore, when the system is going back to its pre-hibernation
-    state, after restore() callbacks have been executed for all devices.
-It also may be executed if the loading of a hibernation image into memory fails
-(in that case it is run after thaw() callbacks have been executed for all
-devices that have drivers in the boot kernel).
-
-This callback is entirely optional, although it may be necessary if the
-prepare() callback performs operations that need to be reversed.
-
-3.1.15. runtime_suspend()
-
-The runtime_suspend() callback is specific to device runtime power management
-(runtime PM).  It is executed by the PM core's runtime PM framework when the
-device is about to be suspended (i.e. quiesced and put into a low-power state)
-at run time.
-
-This callback is responsible for freezing the device and preparing it to be
-put into a low-power state, but it must allow the PCI subsystem to perform all
-of the PCI-specific actions necessary for suspending the device.
-
-3.1.16. runtime_resume()
-
-The runtime_resume() callback is specific to device runtime PM.  It is executed
-by the PM core's runtime PM framework when the device is about to be resumed
-(i.e. put into the full-power state and programmed to process I/O normally) at
-run time.
-
-This callback is responsible for restoring the normal functionality of the
-device after it has been put into the full-power state by the PCI subsystem.
-The device is expected to be able to process I/O in the usual way after
-runtime_resume() has returned.
-
-3.1.17. runtime_idle()
-
-The runtime_idle() callback is specific to device runtime PM.  It is executed
-by the PM core's runtime PM framework whenever it may be desirable to suspend
-the device according to the PM core's information.  In particular, it is
-automatically executed right after runtime_resume() has returned in case the
-resume of the device has happened as a result of a spurious event.
-
-This callback is optional, but if it is not implemented or if it returns 0, the
-PCI subsystem will call pm_runtime_suspend() for the device, which in turn will
-cause the driver's runtime_suspend() callback to be executed.
-
-3.1.18. Pointing Multiple Callback Pointers to One Routine
-
-Although in principle each of the callbacks described in the previous
-subsections can be defined as a separate function, it often is convenient to
-point two or more members of struct dev_pm_ops to the same routine.  There are
-a few convenience macros that can be used for this purpose.
-
-The SIMPLE_DEV_PM_OPS macro declares a struct dev_pm_ops object with one
-suspend routine pointed to by the .suspend(), .freeze(), and .poweroff()
-members and one resume routine pointed to by the .resume(), .thaw(), and
-.restore() members.  The other function pointers in this struct dev_pm_ops are
-unset.
-
-The UNIVERSAL_DEV_PM_OPS macro is similar to SIMPLE_DEV_PM_OPS, but it
-additionally sets the .runtime_resume() pointer to the same value as
-.resume() (and .thaw(), and .restore()) and the .runtime_suspend() pointer to
-the same value as .suspend() (and .freeze() and .poweroff()).
-
-The SET_SYSTEM_SLEEP_PM_OPS can be used inside of a declaration of struct
-dev_pm_ops to indicate that one suspend routine is to be pointed to by the
-.suspend(), .freeze(), and .poweroff() members and one resume routine is to
-be pointed to by the .resume(), .thaw(), and .restore() members.
-
-3.1.19. Driver Flags for Power Management
-
-The PM core allows device drivers to set flags that influence the handling of
-power management for the devices by the core itself and by middle layer code
-including the PCI bus type.  The flags should be set once at the driver probe
-time with the help of the dev_pm_set_driver_flags() function and they should not
-be updated directly afterwards.
-
-The DPM_FLAG_NEVER_SKIP flag prevents the PM core from using the direct-complete
-mechanism allowing device suspend/resume callbacks to be skipped if the device
-is in runtime suspend when the system suspend starts.  That also affects all of
-the ancestors of the device, so this flag should only be used if absolutely
-necessary.
-
-The DPM_FLAG_SMART_PREPARE flag instructs the PCI bus type to only return a
-positive value from pci_pm_prepare() if the ->prepare callback provided by the
-driver of the device returns a positive value.  That allows the driver to opt
-out from using the direct-complete mechanism dynamically.
-
-The DPM_FLAG_SMART_SUSPEND flag tells the PCI bus type that from the driver's
-perspective the device can be safely left in runtime suspend during system
-suspend.  That causes pci_pm_suspend(), pci_pm_freeze() and pci_pm_poweroff()
-to skip resuming the device from runtime suspend unless there are PCI-specific
-reasons for doing that.  Also, it causes pci_pm_suspend_late/noirq(),
-pci_pm_freeze_late/noirq() and pci_pm_poweroff_late/noirq() to return early
-if the device remains in runtime suspend in the beginning of the "late" phase
-of the system-wide transition under way.  Moreover, if the device is in
-runtime suspend in pci_pm_resume_noirq() or pci_pm_restore_noirq(), its runtime
-power management status will be changed to "active" (as it is going to be put
-into D0 going forward), but if it is in runtime suspend in pci_pm_thaw_noirq(),
-the function will set the power.direct_complete flag for it (to make the PM core
-skip the subsequent "thaw" callbacks for it) and return.
-
-Setting the DPM_FLAG_LEAVE_SUSPENDED flag means that the driver prefers the
-device to be left in suspend after system-wide transitions to the working state.
-This flag is checked by the PM core, but the PCI bus type informs the PM core
-which devices may be left in suspend from its perspective (that happens during
-the "noirq" phase of system-wide suspend and analogous transitions) and next it
-uses the dev_pm_may_skip_resume() helper to decide whether or not to return from
-pci_pm_resume_noirq() early, as the PM core will skip the remaining resume
-callbacks for the device during the transition under way and will set its
-runtime PM status to "suspended" if dev_pm_may_skip_resume() returns "true" for
-it.
-
-3.2. Device Runtime Power Management
-------------------------------------
-In addition to providing device power management callbacks PCI device drivers
-are responsible for controlling the runtime power management (runtime PM) of
-their devices.
-
-The PCI device runtime PM is optional, but it is recommended that PCI device
-drivers implement it at least in the cases where there is a reliable way of
-verifying that the device is not used (like when the network cable is detached
-from an Ethernet adapter or there are no devices attached to a USB controller).
-
-To support the PCI runtime PM the driver first needs to implement the
-runtime_suspend() and runtime_resume() callbacks.  It also may need to implement
-the runtime_idle() callback to prevent the device from being suspended again
-every time right after the runtime_resume() callback has returned
-(alternatively, the runtime_suspend() callback will have to check if the
-device should really be suspended and return -EAGAIN if that is not the case).
-
-The runtime PM of PCI devices is enabled by default by the PCI core.  PCI
-device drivers do not need to enable it and should not attempt to do so.
-However, it is blocked by pci_pm_init() that runs the pm_runtime_forbid()
-helper function.  In addition to that, the runtime PM usage counter of
-each PCI device is incremented by local_pci_probe() before executing the
-probe callback provided by the device's driver.
-
-If a PCI driver implements the runtime PM callbacks and intends to use the
-runtime PM framework provided by the PM core and the PCI subsystem, it needs
-to decrement the device's runtime PM usage counter in its probe callback
-function.  If it doesn't do that, the counter will always be different from
-zero for the device and it will never be runtime-suspended.  The simplest
-way to do that is by calling pm_runtime_put_noidle(), but if the driver
-wants to schedule an autosuspend right away, for example, it may call
-pm_runtime_put_autosuspend() instead for this purpose.  Generally, it
-just needs to call a function that decrements the devices usage counter
-from its probe routine to make runtime PM work for the device.
-
-It is important to remember that the driver's runtime_suspend() callback
-may be executed right after the usage counter has been decremented, because
-user space may already have caused the pm_runtime_allow() helper function
-unblocking the runtime PM of the device to run via sysfs, so the driver must
-be prepared to cope with that.
-
-The driver itself should not call pm_runtime_allow(), though.  Instead, it
-should let user space or some platform-specific code do that (user space can
-do it via sysfs as stated above), but it must be prepared to handle the
-runtime PM of the device correctly as soon as pm_runtime_allow() is called
-(which may happen at any time, even before the driver is loaded).
-
-When the driver's remove callback runs, it has to balance the decrementation
-of the device's runtime PM usage counter at the probe time.  For this reason,
-if it has decremented the counter in its probe callback, it must run
-pm_runtime_get_noresume() in its remove callback.  [Since the core carries
-out a runtime resume of the device and bumps up the device's usage counter
-before running the driver's remove callback, the runtime PM of the device
-is effectively disabled for the duration of the remove execution and all
-runtime PM helper functions incrementing the device's usage counter are
-then effectively equivalent to pm_runtime_get_noresume().]
-
-The runtime PM framework works by processing requests to suspend or resume
-devices, or to check if they are idle (in which cases it is reasonable to
-subsequently request that they be suspended).  These requests are represented
-by work items put into the power management workqueue, pm_wq.  Although there
-are a few situations in which power management requests are automatically
-queued by the PM core (for example, after processing a request to resume a
-device the PM core automatically queues a request to check if the device is
-idle), device drivers are generally responsible for queuing power management
-requests for their devices.  For this purpose they should use the runtime PM
-helper functions provided by the PM core, discussed in
-Documentation/power/runtime_pm.txt.
-
-Devices can also be suspended and resumed synchronously, without placing a
-request into pm_wq.  In the majority of cases this also is done by their
-drivers that use helper functions provided by the PM core for this purpose.
-
-For more information on the runtime PM of devices refer to
-Documentation/power/runtime_pm.txt.
-
-
-4. Resources
-============
-
-PCI Local Bus Specification, Rev. 3.0
-PCI Bus Power Management Interface Specification, Rev. 1.2
-Advanced Configuration and Power Interface (ACPI) Specification, Rev. 3.0b
-PCI Express Base Specification, Rev. 2.0
-Documentation/driver-api/pm/devices.rst
-Documentation/power/runtime_pm.txt
diff --git a/Documentation/power/pm_qos_interface.rst b/Documentation/power/pm_qos_interface.rst
new file mode 100644 (file)
index 0000000..945fc6d
--- /dev/null
@@ -0,0 +1,225 @@
+===============================
+PM Quality Of Service Interface
+===============================
+
+This interface provides a kernel and user mode interface for registering
+performance expectations by drivers, subsystems and user space applications on
+one of the parameters.
+
+Two different PM QoS frameworks are available:
+1. PM QoS classes for cpu_dma_latency, network_latency, network_throughput,
+memory_bandwidth.
+2. the per-device PM QoS framework provides the API to manage the per-device latency
+constraints and PM QoS flags.
+
+Each parameters have defined units:
+
+ * latency: usec
+ * timeout: usec
+ * throughput: kbs (kilo bit / sec)
+ * memory bandwidth: mbs (mega bit / sec)
+
+
+1. PM QoS framework
+===================
+
+The infrastructure exposes multiple misc device nodes one per implemented
+parameter.  The set of parameters implement is defined by pm_qos_power_init()
+and pm_qos_params.h.  This is done because having the available parameters
+being runtime configurable or changeable from a driver was seen as too easy to
+abuse.
+
+For each parameter a list of performance requests is maintained along with
+an aggregated target value.  The aggregated target value is updated with
+changes to the request list or elements of the list.  Typically the
+aggregated target value is simply the max or min of the request values held
+in the parameter list elements.
+Note: the aggregated target value is implemented as an atomic variable so that
+reading the aggregated value does not require any locking mechanism.
+
+
+From kernel mode the use of this interface is simple:
+
+void pm_qos_add_request(handle, param_class, target_value):
+  Will insert an element into the list for that identified PM QoS class with the
+  target value.  Upon change to this list the new target is recomputed and any
+  registered notifiers are called only if the target value is now different.
+  Clients of pm_qos need to save the returned handle for future use in other
+  pm_qos API functions.
+
+void pm_qos_update_request(handle, new_target_value):
+  Will update the list element pointed to by the handle with the new target value
+  and recompute the new aggregated target, calling the notification tree if the
+  target is changed.
+
+void pm_qos_remove_request(handle):
+  Will remove the element.  After removal it will update the aggregate target and
+  call the notification tree if the target was changed as a result of removing
+  the request.
+
+int pm_qos_request(param_class):
+  Returns the aggregated value for a given PM QoS class.
+
+int pm_qos_request_active(handle):
+  Returns if the request is still active, i.e. it has not been removed from a
+  PM QoS class constraints list.
+
+int pm_qos_add_notifier(param_class, notifier):
+  Adds a notification callback function to the PM QoS class. The callback is
+  called when the aggregated value for the PM QoS class is changed.
+
+int pm_qos_remove_notifier(int param_class, notifier):
+  Removes the notification callback function for the PM QoS class.
+
+
+From user mode:
+
+Only processes can register a pm_qos request.  To provide for automatic
+cleanup of a process, the interface requires the process to register its
+parameter requests in the following way:
+
+To register the default pm_qos target for the specific parameter, the process
+must open one of /dev/[cpu_dma_latency, network_latency, network_throughput]
+
+As long as the device node is held open that process has a registered
+request on the parameter.
+
+To change the requested target value the process needs to write an s32 value to
+the open device node.  Alternatively the user mode program could write a hex
+string for the value using 10 char long format e.g. "0x12345678".  This
+translates to a pm_qos_update_request call.
+
+To remove the user mode request for a target value simply close the device
+node.
+
+
+2. PM QoS per-device latency and flags framework
+================================================
+
+For each device, there are three lists of PM QoS requests. Two of them are
+maintained along with the aggregated targets of resume latency and active
+state latency tolerance (in microseconds) and the third one is for PM QoS flags.
+Values are updated in response to changes of the request list.
+
+The target values of resume latency and active state latency tolerance are
+simply the minimum of the request values held in the parameter list elements.
+The PM QoS flags aggregate value is a gather (bitwise OR) of all list elements'
+values.  One device PM QoS flag is defined currently: PM_QOS_FLAG_NO_POWER_OFF.
+
+Note: The aggregated target values are implemented in such a way that reading
+the aggregated value does not require any locking mechanism.
+
+
+From kernel mode the use of this interface is the following:
+
+int dev_pm_qos_add_request(device, handle, type, value):
+  Will insert an element into the list for that identified device with the
+  target value.  Upon change to this list the new target is recomputed and any
+  registered notifiers are called only if the target value is now different.
+  Clients of dev_pm_qos need to save the handle for future use in other
+  dev_pm_qos API functions.
+
+int dev_pm_qos_update_request(handle, new_value):
+  Will update the list element pointed to by the handle with the new target
+  value and recompute the new aggregated target, calling the notification
+  trees if the target is changed.
+
+int dev_pm_qos_remove_request(handle):
+  Will remove the element.  After removal it will update the aggregate target
+  and call the notification trees if the target was changed as a result of
+  removing the request.
+
+s32 dev_pm_qos_read_value(device):
+  Returns the aggregated value for a given device's constraints list.
+
+enum pm_qos_flags_status dev_pm_qos_flags(device, mask)
+  Check PM QoS flags of the given device against the given mask of flags.
+  The meaning of the return values is as follows:
+
+       PM_QOS_FLAGS_ALL:
+               All flags from the mask are set
+       PM_QOS_FLAGS_SOME:
+               Some flags from the mask are set
+       PM_QOS_FLAGS_NONE:
+               No flags from the mask are set
+       PM_QOS_FLAGS_UNDEFINED:
+               The device's PM QoS structure has not been initialized
+               or the list of requests is empty.
+
+int dev_pm_qos_add_ancestor_request(dev, handle, type, value)
+  Add a PM QoS request for the first direct ancestor of the given device whose
+  power.ignore_children flag is unset (for DEV_PM_QOS_RESUME_LATENCY requests)
+  or whose power.set_latency_tolerance callback pointer is not NULL (for
+  DEV_PM_QOS_LATENCY_TOLERANCE requests).
+
+int dev_pm_qos_expose_latency_limit(device, value)
+  Add a request to the device's PM QoS list of resume latency constraints and
+  create a sysfs attribute pm_qos_resume_latency_us under the device's power
+  directory allowing user space to manipulate that request.
+
+void dev_pm_qos_hide_latency_limit(device)
+  Drop the request added by dev_pm_qos_expose_latency_limit() from the device's
+  PM QoS list of resume latency constraints and remove sysfs attribute
+  pm_qos_resume_latency_us from the device's power directory.
+
+int dev_pm_qos_expose_flags(device, value)
+  Add a request to the device's PM QoS list of flags and create sysfs attribute
+  pm_qos_no_power_off under the device's power directory allowing user space to
+  change the value of the PM_QOS_FLAG_NO_POWER_OFF flag.
+
+void dev_pm_qos_hide_flags(device)
+  Drop the request added by dev_pm_qos_expose_flags() from the device's PM QoS list
+  of flags and remove sysfs attribute pm_qos_no_power_off from the device's power
+  directory.
+
+Notification mechanisms:
+
+The per-device PM QoS framework has a per-device notification tree.
+
+int dev_pm_qos_add_notifier(device, notifier):
+  Adds a notification callback function for the device.
+  The callback is called when the aggregated value of the device constraints list
+  is changed (for resume latency device PM QoS only).
+
+int dev_pm_qos_remove_notifier(device, notifier):
+  Removes the notification callback function for the device.
+
+
+Active state latency tolerance
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This device PM QoS type is used to support systems in which hardware may switch
+to energy-saving operation modes on the fly.  In those systems, if the operation
+mode chosen by the hardware attempts to save energy in an overly aggressive way,
+it may cause excess latencies to be visible to software, causing it to miss
+certain protocol requirements or target frame or sample rates etc.
+
+If there is a latency tolerance control mechanism for a given device available
+to software, the .set_latency_tolerance callback in that device's dev_pm_info
+structure should be populated.  The routine pointed to by it is should implement
+whatever is necessary to transfer the effective requirement value to the
+hardware.
+
+Whenever the effective latency tolerance changes for the device, its
+.set_latency_tolerance() callback will be executed and the effective value will
+be passed to it.  If that value is negative, which means that the list of
+latency tolerance requirements for the device is empty, the callback is expected
+to switch the underlying hardware latency tolerance control mechanism to an
+autonomous mode if available.  If that value is PM_QOS_LATENCY_ANY, in turn, and
+the hardware supports a special "no requirement" setting, the callback is
+expected to use it.  That allows software to prevent the hardware from
+automatically updating the device's latency tolerance in response to its power
+state changes (e.g. during transitions from D3cold to D0), which generally may
+be done in the autonomous latency tolerance control mode.
+
+If .set_latency_tolerance() is present for the device, sysfs attribute
+pm_qos_latency_tolerance_us will be present in the devivce's power directory.
+Then, user space can use that attribute to specify its latency tolerance
+requirement for the device, if any.  Writing "any" to it means "no requirement,
+but do not let the hardware control latency tolerance" and writing "auto" to it
+allows the hardware to be switched to the autonomous mode if there are no other
+requirements from the kernel side in the device's list.
+
+Kernel code can use the functions described above along with the
+DEV_PM_QOS_LATENCY_TOLERANCE device PM QoS type to add, remove and update
+latency tolerance requirements for devices.
diff --git a/Documentation/power/pm_qos_interface.txt b/Documentation/power/pm_qos_interface.txt
deleted file mode 100644 (file)
index 19c5f7b..0000000
+++ /dev/null
@@ -1,212 +0,0 @@
-PM Quality Of Service Interface.
-
-This interface provides a kernel and user mode interface for registering
-performance expectations by drivers, subsystems and user space applications on
-one of the parameters.
-
-Two different PM QoS frameworks are available:
-1. PM QoS classes for cpu_dma_latency, network_latency, network_throughput,
-memory_bandwidth.
-2. the per-device PM QoS framework provides the API to manage the per-device latency
-constraints and PM QoS flags.
-
-Each parameters have defined units:
- * latency: usec
- * timeout: usec
- * throughput: kbs (kilo bit / sec)
- * memory bandwidth: mbs (mega bit / sec)
-
-
-1. PM QoS framework
-
-The infrastructure exposes multiple misc device nodes one per implemented
-parameter.  The set of parameters implement is defined by pm_qos_power_init()
-and pm_qos_params.h.  This is done because having the available parameters
-being runtime configurable or changeable from a driver was seen as too easy to
-abuse.
-
-For each parameter a list of performance requests is maintained along with
-an aggregated target value.  The aggregated target value is updated with
-changes to the request list or elements of the list.  Typically the
-aggregated target value is simply the max or min of the request values held
-in the parameter list elements.
-Note: the aggregated target value is implemented as an atomic variable so that
-reading the aggregated value does not require any locking mechanism.
-
-
-From kernel mode the use of this interface is simple:
-
-void pm_qos_add_request(handle, param_class, target_value):
-Will insert an element into the list for that identified PM QoS class with the
-target value.  Upon change to this list the new target is recomputed and any
-registered notifiers are called only if the target value is now different.
-Clients of pm_qos need to save the returned handle for future use in other
-pm_qos API functions.
-
-void pm_qos_update_request(handle, new_target_value):
-Will update the list element pointed to by the handle with the new target value
-and recompute the new aggregated target, calling the notification tree if the
-target is changed.
-
-void pm_qos_remove_request(handle):
-Will remove the element.  After removal it will update the aggregate target and
-call the notification tree if the target was changed as a result of removing
-the request.
-
-int pm_qos_request(param_class):
-Returns the aggregated value for a given PM QoS class.
-
-int pm_qos_request_active(handle):
-Returns if the request is still active, i.e. it has not been removed from a
-PM QoS class constraints list.
-
-int pm_qos_add_notifier(param_class, notifier):
-Adds a notification callback function to the PM QoS class. The callback is
-called when the aggregated value for the PM QoS class is changed.
-
-int pm_qos_remove_notifier(int param_class, notifier):
-Removes the notification callback function for the PM QoS class.
-
-
-From user mode:
-Only processes can register a pm_qos request.  To provide for automatic
-cleanup of a process, the interface requires the process to register its
-parameter requests in the following way:
-
-To register the default pm_qos target for the specific parameter, the process
-must open one of /dev/[cpu_dma_latency, network_latency, network_throughput]
-
-As long as the device node is held open that process has a registered
-request on the parameter.
-
-To change the requested target value the process needs to write an s32 value to
-the open device node.  Alternatively the user mode program could write a hex
-string for the value using 10 char long format e.g. "0x12345678".  This
-translates to a pm_qos_update_request call.
-
-To remove the user mode request for a target value simply close the device
-node.
-
-
-2. PM QoS per-device latency and flags framework
-
-For each device, there are three lists of PM QoS requests. Two of them are
-maintained along with the aggregated targets of resume latency and active
-state latency tolerance (in microseconds) and the third one is for PM QoS flags.
-Values are updated in response to changes of the request list.
-
-The target values of resume latency and active state latency tolerance are
-simply the minimum of the request values held in the parameter list elements.
-The PM QoS flags aggregate value is a gather (bitwise OR) of all list elements'
-values.  One device PM QoS flag is defined currently: PM_QOS_FLAG_NO_POWER_OFF.
-
-Note: The aggregated target values are implemented in such a way that reading
-the aggregated value does not require any locking mechanism.
-
-
-From kernel mode the use of this interface is the following:
-
-int dev_pm_qos_add_request(device, handle, type, value):
-Will insert an element into the list for that identified device with the
-target value.  Upon change to this list the new target is recomputed and any
-registered notifiers are called only if the target value is now different.
-Clients of dev_pm_qos need to save the handle for future use in other
-dev_pm_qos API functions.
-
-int dev_pm_qos_update_request(handle, new_value):
-Will update the list element pointed to by the handle with the new target value
-and recompute the new aggregated target, calling the notification trees if the
-target is changed.
-
-int dev_pm_qos_remove_request(handle):
-Will remove the element.  After removal it will update the aggregate target and
-call the notification trees if the target was changed as a result of removing
-the request.
-
-s32 dev_pm_qos_read_value(device):
-Returns the aggregated value for a given device's constraints list.
-
-enum pm_qos_flags_status dev_pm_qos_flags(device, mask)
-Check PM QoS flags of the given device against the given mask of flags.
-The meaning of the return values is as follows:
-       PM_QOS_FLAGS_ALL: All flags from the mask are set
-       PM_QOS_FLAGS_SOME: Some flags from the mask are set
-       PM_QOS_FLAGS_NONE: No flags from the mask are set
-       PM_QOS_FLAGS_UNDEFINED: The device's PM QoS structure has not been
-                       initialized or the list of requests is empty.
-
-int dev_pm_qos_add_ancestor_request(dev, handle, type, value)
-Add a PM QoS request for the first direct ancestor of the given device whose
-power.ignore_children flag is unset (for DEV_PM_QOS_RESUME_LATENCY requests)
-or whose power.set_latency_tolerance callback pointer is not NULL (for
-DEV_PM_QOS_LATENCY_TOLERANCE requests).
-
-int dev_pm_qos_expose_latency_limit(device, value)
-Add a request to the device's PM QoS list of resume latency constraints and
-create a sysfs attribute pm_qos_resume_latency_us under the device's power
-directory allowing user space to manipulate that request.
-
-void dev_pm_qos_hide_latency_limit(device)
-Drop the request added by dev_pm_qos_expose_latency_limit() from the device's
-PM QoS list of resume latency constraints and remove sysfs attribute
-pm_qos_resume_latency_us from the device's power directory.
-
-int dev_pm_qos_expose_flags(device, value)
-Add a request to the device's PM QoS list of flags and create sysfs attribute
-pm_qos_no_power_off under the device's power directory allowing user space to
-change the value of the PM_QOS_FLAG_NO_POWER_OFF flag.
-
-void dev_pm_qos_hide_flags(device)
-Drop the request added by dev_pm_qos_expose_flags() from the device's PM QoS list
-of flags and remove sysfs attribute pm_qos_no_power_off from the device's power
-directory.
-
-Notification mechanisms:
-The per-device PM QoS framework has a per-device notification tree.
-
-int dev_pm_qos_add_notifier(device, notifier):
-Adds a notification callback function for the device.
-The callback is called when the aggregated value of the device constraints list
-is changed (for resume latency device PM QoS only).
-
-int dev_pm_qos_remove_notifier(device, notifier):
-Removes the notification callback function for the device.
-
-
-Active state latency tolerance
-
-This device PM QoS type is used to support systems in which hardware may switch
-to energy-saving operation modes on the fly.  In those systems, if the operation
-mode chosen by the hardware attempts to save energy in an overly aggressive way,
-it may cause excess latencies to be visible to software, causing it to miss
-certain protocol requirements or target frame or sample rates etc.
-
-If there is a latency tolerance control mechanism for a given device available
-to software, the .set_latency_tolerance callback in that device's dev_pm_info
-structure should be populated.  The routine pointed to by it is should implement
-whatever is necessary to transfer the effective requirement value to the
-hardware.
-
-Whenever the effective latency tolerance changes for the device, its
-.set_latency_tolerance() callback will be executed and the effective value will
-be passed to it.  If that value is negative, which means that the list of
-latency tolerance requirements for the device is empty, the callback is expected
-to switch the underlying hardware latency tolerance control mechanism to an
-autonomous mode if available.  If that value is PM_QOS_LATENCY_ANY, in turn, and
-the hardware supports a special "no requirement" setting, the callback is
-expected to use it.  That allows software to prevent the hardware from
-automatically updating the device's latency tolerance in response to its power
-state changes (e.g. during transitions from D3cold to D0), which generally may
-be done in the autonomous latency tolerance control mode.
-
-If .set_latency_tolerance() is present for the device, sysfs attribute
-pm_qos_latency_tolerance_us will be present in the devivce's power directory.
-Then, user space can use that attribute to specify its latency tolerance
-requirement for the device, if any.  Writing "any" to it means "no requirement,
-but do not let the hardware control latency tolerance" and writing "auto" to it
-allows the hardware to be switched to the autonomous mode if there are no other
-requirements from the kernel side in the device's list.
-
-Kernel code can use the functions described above along with the
-DEV_PM_QOS_LATENCY_TOLERANCE device PM QoS type to add, remove and update
-latency tolerance requirements for devices.
diff --git a/Documentation/power/power_supply_class.rst b/Documentation/power/power_supply_class.rst
new file mode 100644 (file)
index 0000000..3f2c3fe
--- /dev/null
@@ -0,0 +1,282 @@
+========================
+Linux power supply class
+========================
+
+Synopsis
+~~~~~~~~
+Power supply class used to represent battery, UPS, AC or DC power supply
+properties to user-space.
+
+It defines core set of attributes, which should be applicable to (almost)
+every power supply out there. Attributes are available via sysfs and uevent
+interfaces.
+
+Each attribute has well defined meaning, up to unit of measure used. While
+the attributes provided are believed to be universally applicable to any
+power supply, specific monitoring hardware may not be able to provide them
+all, so any of them may be skipped.
+
+Power supply class is extensible, and allows to define drivers own attributes.
+The core attribute set is subject to the standard Linux evolution (i.e.
+if it will be found that some attribute is applicable to many power supply
+types or their drivers, it can be added to the core set).
+
+It also integrates with LED framework, for the purpose of providing
+typically expected feedback of battery charging/fully charged status and
+AC/USB power supply online status. (Note that specific details of the
+indication (including whether to use it at all) are fully controllable by
+user and/or specific machine defaults, per design principles of LED
+framework).
+
+
+Attributes/properties
+~~~~~~~~~~~~~~~~~~~~~
+Power supply class has predefined set of attributes, this eliminates code
+duplication across drivers. Power supply class insist on reusing its
+predefined attributes *and* their units.
+
+So, userspace gets predictable set of attributes and their units for any
+kind of power supply, and can process/present them to a user in consistent
+manner. Results for different power supplies and machines are also directly
+comparable.
+
+See drivers/power/supply/ds2760_battery.c and drivers/power/supply/pda_power.c
+for the example how to declare and handle attributes.
+
+
+Units
+~~~~~
+Quoting include/linux/power_supply.h:
+
+  All voltages, currents, charges, energies, time and temperatures in µV,
+  µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
+  stated. It's driver's job to convert its raw values to units in which
+  this class operates.
+
+
+Attributes/properties detailed
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
++--------------------------------------------------------------------------+
+|               **Charge/Energy/Capacity - how to not confuse**            |
++--------------------------------------------------------------------------+
+| **Because both "charge" (µAh) and "energy" (µWh) represents "capacity"   |
+| of battery, this class distinguish these terms. Don't mix them!**        |
+|                                                                          |
+| - `CHARGE_*`                                                             |
+|      attributes represents capacity in µAh only.                        |
+| - `ENERGY_*`                                                             |
+|      attributes represents capacity in µWh only.                        |
+| - `CAPACITY`                                                             |
+|      attribute represents capacity in *percents*, from 0 to 100.        |
++--------------------------------------------------------------------------+
+
+Postfixes:
+
+_AVG
+  *hardware* averaged value, use it if your hardware is really able to
+  report averaged values.
+_NOW
+  momentary/instantaneous values.
+
+STATUS
+  this attribute represents operating status (charging, full,
+  discharging (i.e. powering a load), etc.). This corresponds to
+  `BATTERY_STATUS_*` values, as defined in battery.h.
+
+CHARGE_TYPE
+  batteries can typically charge at different rates.
+  This defines trickle and fast charges.  For batteries that
+  are already charged or discharging, 'n/a' can be displayed (or
+  'unknown', if the status is not known).
+
+AUTHENTIC
+  indicates the power supply (battery or charger) connected
+  to the platform is authentic(1) or non authentic(0).
+
+HEALTH
+  represents health of the battery, values corresponds to
+  POWER_SUPPLY_HEALTH_*, defined in battery.h.
+
+VOLTAGE_OCV
+  open circuit voltage of the battery.
+
+VOLTAGE_MAX_DESIGN, VOLTAGE_MIN_DESIGN
+  design values for maximal and minimal power supply voltages.
+  Maximal/minimal means values of voltages when battery considered
+  "full"/"empty" at normal conditions. Yes, there is no direct relation
+  between voltage and battery capacity, but some dumb
+  batteries use voltage for very approximated calculation of capacity.
+  Battery driver also can use this attribute just to inform userspace
+  about maximal and minimal voltage thresholds of a given battery.
+
+VOLTAGE_MAX, VOLTAGE_MIN
+  same as _DESIGN voltage values except that these ones should be used
+  if hardware could only guess (measure and retain) the thresholds of a
+  given power supply.
+
+VOLTAGE_BOOT
+  Reports the voltage measured during boot
+
+CURRENT_BOOT
+  Reports the current measured during boot
+
+CHARGE_FULL_DESIGN, CHARGE_EMPTY_DESIGN
+  design charge values, when battery considered full/empty.
+
+ENERGY_FULL_DESIGN, ENERGY_EMPTY_DESIGN
+  same as above but for energy.
+
+CHARGE_FULL, CHARGE_EMPTY
+  These attributes means "last remembered value of charge when battery
+  became full/empty". It also could mean "value of charge when battery
+  considered full/empty at given conditions (temperature, age)".
+  I.e. these attributes represents real thresholds, not design values.
+
+ENERGY_FULL, ENERGY_EMPTY
+  same as above but for energy.
+
+CHARGE_COUNTER
+  the current charge counter (in µAh).  This could easily
+  be negative; there is no empty or full value.  It is only useful for
+  relative, time-based measurements.
+
+PRECHARGE_CURRENT
+  the maximum charge current during precharge phase of charge cycle
+  (typically 20% of battery capacity).
+
+CHARGE_TERM_CURRENT
+  Charge termination current. The charge cycle terminates when battery
+  voltage is above recharge threshold, and charge current is below
+  this setting (typically 10% of battery capacity).
+
+CONSTANT_CHARGE_CURRENT
+  constant charge current programmed by charger.
+
+
+CONSTANT_CHARGE_CURRENT_MAX
+  maximum charge current supported by the power supply object.
+
+CONSTANT_CHARGE_VOLTAGE
+  constant charge voltage programmed by charger.
+CONSTANT_CHARGE_VOLTAGE_MAX
+  maximum charge voltage supported by the power supply object.
+
+INPUT_CURRENT_LIMIT
+  input current limit programmed by charger. Indicates
+  the current drawn from a charging source.
+
+CHARGE_CONTROL_LIMIT
+  current charge control limit setting
+CHARGE_CONTROL_LIMIT_MAX
+  maximum charge control limit setting
+
+CALIBRATE
+  battery or coulomb counter calibration status
+
+CAPACITY
+  capacity in percents.
+CAPACITY_ALERT_MIN
+  minimum capacity alert value in percents.
+CAPACITY_ALERT_MAX
+  maximum capacity alert value in percents.
+CAPACITY_LEVEL
+  capacity level. This corresponds to POWER_SUPPLY_CAPACITY_LEVEL_*.
+
+TEMP
+  temperature of the power supply.
+TEMP_ALERT_MIN
+  minimum battery temperature alert.
+TEMP_ALERT_MAX
+  maximum battery temperature alert.
+TEMP_AMBIENT
+  ambient temperature.
+TEMP_AMBIENT_ALERT_MIN
+  minimum ambient temperature alert.
+TEMP_AMBIENT_ALERT_MAX
+  maximum ambient temperature alert.
+TEMP_MIN
+  minimum operatable temperature
+TEMP_MAX
+  maximum operatable temperature
+
+TIME_TO_EMPTY
+  seconds left for battery to be considered empty
+  (i.e. while battery powers a load)
+TIME_TO_FULL
+  seconds left for battery to be considered full
+  (i.e. while battery is charging)
+
+
+Battery <-> external power supply interaction
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Often power supplies are acting as supplies and supplicants at the same
+time. Batteries are good example. So, batteries usually care if they're
+externally powered or not.
+
+For that case, power supply class implements notification mechanism for
+batteries.
+
+External power supply (AC) lists supplicants (batteries) names in
+"supplied_to" struct member, and each power_supply_changed() call
+issued by external power supply will notify supplicants via
+external_power_changed callback.
+
+
+Devicetree battery characteristics
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Drivers should call power_supply_get_battery_info() to obtain battery
+characteristics from a devicetree battery node, defined in
+Documentation/devicetree/bindings/power/supply/battery.txt. This is
+implemented in drivers/power/supply/bq27xxx_battery.c.
+
+Properties in struct power_supply_battery_info and their counterparts in the
+battery node have names corresponding to elements in enum power_supply_property,
+for naming consistency between sysfs attributes and battery node properties.
+
+
+QA
+~~
+
+Q:
+   Where is POWER_SUPPLY_PROP_XYZ attribute?
+A:
+   If you cannot find attribute suitable for your driver needs, feel free
+   to add it and send patch along with your driver.
+
+   The attributes available currently are the ones currently provided by the
+   drivers written.
+
+   Good candidates to add in future: model/part#, cycle_time, manufacturer,
+   etc.
+
+
+Q:
+   I have some very specific attribute (e.g. battery color), should I add
+   this attribute to standard ones?
+A:
+   Most likely, no. Such attribute can be placed in the driver itself, if
+   it is useful. Of course, if the attribute in question applicable to
+   large set of batteries, provided by many drivers, and/or comes from
+   some general battery specification/standard, it may be a candidate to
+   be added to the core attribute set.
+
+
+Q:
+   Suppose, my battery monitoring chip/firmware does not provides capacity
+   in percents, but provides charge_{now,full,empty}. Should I calculate
+   percentage capacity manually, inside the driver, and register CAPACITY
+   attribute? The same question about time_to_empty/time_to_full.
+A:
+   Most likely, no. This class is designed to export properties which are
+   directly measurable by the specific hardware available.
+
+   Inferring not available properties using some heuristics or mathematical
+   model is not subject of work for a battery driver. Such functionality
+   should be factored out, and in fact, apm_power, the driver to serve
+   legacy APM API on top of power supply class, uses a simple heuristic of
+   approximating remaining battery capacity based on its charge, current,
+   voltage and so on. But full-fledged battery model is likely not subject
+   for kernel at all, as it would require floating point calculation to deal
+   with things like differential equations and Kalman filters. This is
+   better be handled by batteryd/libbattery, yet to be written.
diff --git a/Documentation/power/power_supply_class.txt b/Documentation/power/power_supply_class.txt
deleted file mode 100644 (file)
index 300d378..0000000
+++ /dev/null
@@ -1,231 +0,0 @@
-Linux power supply class
-========================
-
-Synopsis
-~~~~~~~~
-Power supply class used to represent battery, UPS, AC or DC power supply
-properties to user-space.
-
-It defines core set of attributes, which should be applicable to (almost)
-every power supply out there. Attributes are available via sysfs and uevent
-interfaces.
-
-Each attribute has well defined meaning, up to unit of measure used. While
-the attributes provided are believed to be universally applicable to any
-power supply, specific monitoring hardware may not be able to provide them
-all, so any of them may be skipped.
-
-Power supply class is extensible, and allows to define drivers own attributes.
-The core attribute set is subject to the standard Linux evolution (i.e.
-if it will be found that some attribute is applicable to many power supply
-types or their drivers, it can be added to the core set).
-
-It also integrates with LED framework, for the purpose of providing
-typically expected feedback of battery charging/fully charged status and
-AC/USB power supply online status. (Note that specific details of the
-indication (including whether to use it at all) are fully controllable by
-user and/or specific machine defaults, per design principles of LED
-framework).
-
-
-Attributes/properties
-~~~~~~~~~~~~~~~~~~~~~
-Power supply class has predefined set of attributes, this eliminates code
-duplication across drivers. Power supply class insist on reusing its
-predefined attributes *and* their units.
-
-So, userspace gets predictable set of attributes and their units for any
-kind of power supply, and can process/present them to a user in consistent
-manner. Results for different power supplies and machines are also directly
-comparable.
-
-See drivers/power/supply/ds2760_battery.c and drivers/power/supply/pda_power.c
-for the example how to declare and handle attributes.
-
-
-Units
-~~~~~
-Quoting include/linux/power_supply.h:
-
-  All voltages, currents, charges, energies, time and temperatures in µV,
-  µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
-  stated. It's driver's job to convert its raw values to units in which
-  this class operates.
-
-
-Attributes/properties detailed
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-~ ~ ~ ~ ~ ~ ~  Charge/Energy/Capacity - how to not confuse  ~ ~ ~ ~ ~ ~ ~
-~                                                                       ~
-~ Because both "charge" (µAh) and "energy" (µWh) represents "capacity"  ~
-~ of battery, this class distinguish these terms. Don't mix them!       ~
-~                                                                       ~
-~ CHARGE_* attributes represents capacity in µAh only.                  ~
-~ ENERGY_* attributes represents capacity in µWh only.                  ~
-~ CAPACITY attribute represents capacity in *percents*, from 0 to 100.  ~
-~                                                                       ~
-~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
-
-Postfixes:
-_AVG - *hardware* averaged value, use it if your hardware is really able to
-report averaged values.
-_NOW - momentary/instantaneous values.
-
-STATUS - this attribute represents operating status (charging, full,
-discharging (i.e. powering a load), etc.). This corresponds to
-BATTERY_STATUS_* values, as defined in battery.h.
-
-CHARGE_TYPE - batteries can typically charge at different rates.
-This defines trickle and fast charges.  For batteries that
-are already charged or discharging, 'n/a' can be displayed (or
-'unknown', if the status is not known).
-
-AUTHENTIC - indicates the power supply (battery or charger) connected
-to the platform is authentic(1) or non authentic(0).
-
-HEALTH - represents health of the battery, values corresponds to
-POWER_SUPPLY_HEALTH_*, defined in battery.h.
-
-VOLTAGE_OCV - open circuit voltage of the battery.
-
-VOLTAGE_MAX_DESIGN, VOLTAGE_MIN_DESIGN - design values for maximal and
-minimal power supply voltages. Maximal/minimal means values of voltages
-when battery considered "full"/"empty" at normal conditions. Yes, there is
-no direct relation between voltage and battery capacity, but some dumb
-batteries use voltage for very approximated calculation of capacity.
-Battery driver also can use this attribute just to inform userspace
-about maximal and minimal voltage thresholds of a given battery.
-
-VOLTAGE_MAX, VOLTAGE_MIN - same as _DESIGN voltage values except that
-these ones should be used if hardware could only guess (measure and
-retain) the thresholds of a given power supply.
-
-VOLTAGE_BOOT - Reports the voltage measured during boot
-
-CURRENT_BOOT - Reports the current measured during boot
-
-CHARGE_FULL_DESIGN, CHARGE_EMPTY_DESIGN - design charge values, when
-battery considered full/empty.
-
-ENERGY_FULL_DESIGN, ENERGY_EMPTY_DESIGN - same as above but for energy.
-
-CHARGE_FULL, CHARGE_EMPTY - These attributes means "last remembered value
-of charge when battery became full/empty". It also could mean "value of
-charge when battery considered full/empty at given conditions (temperature,
-age)". I.e. these attributes represents real thresholds, not design values.
-
-ENERGY_FULL, ENERGY_EMPTY - same as above but for energy.
-
-CHARGE_COUNTER - the current charge counter (in µAh).  This could easily
-be negative; there is no empty or full value.  It is only useful for
-relative, time-based measurements.
-
-PRECHARGE_CURRENT - the maximum charge current during precharge phase
-of charge cycle (typically 20% of battery capacity).
-CHARGE_TERM_CURRENT - Charge termination current. The charge cycle
-terminates when battery voltage is above recharge threshold, and charge
-current is below this setting (typically 10% of battery capacity).
-
-CONSTANT_CHARGE_CURRENT - constant charge current programmed by charger.
-CONSTANT_CHARGE_CURRENT_MAX - maximum charge current supported by the
-power supply object.
-
-CONSTANT_CHARGE_VOLTAGE - constant charge voltage programmed by charger.
-CONSTANT_CHARGE_VOLTAGE_MAX - maximum charge voltage supported by the
-power supply object.
-
-INPUT_CURRENT_LIMIT - input current limit programmed by charger. Indicates
-the current drawn from a charging source.
-
-CHARGE_CONTROL_LIMIT - current charge control limit setting
-CHARGE_CONTROL_LIMIT_MAX - maximum charge control limit setting
-
-CALIBRATE - battery or coulomb counter calibration status
-
-CAPACITY - capacity in percents.
-CAPACITY_ALERT_MIN - minimum capacity alert value in percents.
-CAPACITY_ALERT_MAX - maximum capacity alert value in percents.
-CAPACITY_LEVEL - capacity level. This corresponds to
-POWER_SUPPLY_CAPACITY_LEVEL_*.
-
-TEMP - temperature of the power supply.
-TEMP_ALERT_MIN - minimum battery temperature alert.
-TEMP_ALERT_MAX - maximum battery temperature alert.
-TEMP_AMBIENT - ambient temperature.
-TEMP_AMBIENT_ALERT_MIN - minimum ambient temperature alert.
-TEMP_AMBIENT_ALERT_MAX - maximum ambient temperature alert.
-TEMP_MIN - minimum operatable temperature
-TEMP_MAX - maximum operatable temperature
-
-TIME_TO_EMPTY - seconds left for battery to be considered empty (i.e.
-while battery powers a load)
-TIME_TO_FULL - seconds left for battery to be considered full (i.e.
-while battery is charging)
-
-
-Battery <-> external power supply interaction
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Often power supplies are acting as supplies and supplicants at the same
-time. Batteries are good example. So, batteries usually care if they're
-externally powered or not.
-
-For that case, power supply class implements notification mechanism for
-batteries.
-
-External power supply (AC) lists supplicants (batteries) names in
-"supplied_to" struct member, and each power_supply_changed() call
-issued by external power supply will notify supplicants via
-external_power_changed callback.
-
-
-Devicetree battery characteristics
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Drivers should call power_supply_get_battery_info() to obtain battery
-characteristics from a devicetree battery node, defined in
-Documentation/devicetree/bindings/power/supply/battery.txt. This is
-implemented in drivers/power/supply/bq27xxx_battery.c.
-
-Properties in struct power_supply_battery_info and their counterparts in the
-battery node have names corresponding to elements in enum power_supply_property,
-for naming consistency between sysfs attributes and battery node properties.
-
-
-QA
-~~
-Q: Where is POWER_SUPPLY_PROP_XYZ attribute?
-A: If you cannot find attribute suitable for your driver needs, feel free
-   to add it and send patch along with your driver.
-
-   The attributes available currently are the ones currently provided by the
-   drivers written.
-
-   Good candidates to add in future: model/part#, cycle_time, manufacturer,
-   etc.
-
-
-Q: I have some very specific attribute (e.g. battery color), should I add
-   this attribute to standard ones?
-A: Most likely, no. Such attribute can be placed in the driver itself, if
-   it is useful. Of course, if the attribute in question applicable to
-   large set of batteries, provided by many drivers, and/or comes from
-   some general battery specification/standard, it may be a candidate to
-   be added to the core attribute set.
-
-
-Q: Suppose, my battery monitoring chip/firmware does not provides capacity
-   in percents, but provides charge_{now,full,empty}. Should I calculate
-   percentage capacity manually, inside the driver, and register CAPACITY
-   attribute? The same question about time_to_empty/time_to_full.
-A: Most likely, no. This class is designed to export properties which are
-   directly measurable by the specific hardware available.
-
-   Inferring not available properties using some heuristics or mathematical
-   model is not subject of work for a battery driver. Such functionality
-   should be factored out, and in fact, apm_power, the driver to serve
-   legacy APM API on top of power supply class, uses a simple heuristic of
-   approximating remaining battery capacity based on its charge, current,
-   voltage and so on. But full-fledged battery model is likely not subject
-   for kernel at all, as it would require floating point calculation to deal
-   with things like differential equations and Kalman filters. This is
-   better be handled by batteryd/libbattery, yet to be written.
diff --git a/Documentation/power/powercap/powercap.rst b/Documentation/power/powercap/powercap.rst
new file mode 100644 (file)
index 0000000..7ae3b44
--- /dev/null
@@ -0,0 +1,257 @@
+=======================
+Power Capping Framework
+=======================
+
+The power capping framework provides a consistent interface between the kernel
+and the user space that allows power capping drivers to expose the settings to
+user space in a uniform way.
+
+Terminology
+===========
+
+The framework exposes power capping devices to user space via sysfs in the
+form of a tree of objects. The objects at the root level of the tree represent
+'control types', which correspond to different methods of power capping.  For
+example, the intel-rapl control type represents the Intel "Running Average
+Power Limit" (RAPL) technology, whereas the 'idle-injection' control type
+corresponds to the use of idle injection for controlling power.
+
+Power zones represent different parts of the system, which can be controlled and
+monitored using the power capping method determined by the control type the
+given zone belongs to. They each contain attributes for monitoring power, as
+well as controls represented in the form of power constraints.  If the parts of
+the system represented by different power zones are hierarchical (that is, one
+bigger part consists of multiple smaller parts that each have their own power
+controls), those power zones may also be organized in a hierarchy with one
+parent power zone containing multiple subzones and so on to reflect the power
+control topology of the system.  In that case, it is possible to apply power
+capping to a set of devices together using the parent power zone and if more
+fine grained control is required, it can be applied through the subzones.
+
+
+Example sysfs interface tree::
+
+  /sys/devices/virtual/powercap
+  └──intel-rapl
+      ├──intel-rapl:0
+      │   ├──constraint_0_name
+      │   ├──constraint_0_power_limit_uw
+      │   ├──constraint_0_time_window_us
+      │   ├──constraint_1_name
+      │   ├──constraint_1_power_limit_uw
+      │   ├──constraint_1_time_window_us
+      │   ├──device -> ../../intel-rapl
+      │   ├──energy_uj
+      │   ├──intel-rapl:0:0
+      │   │   ├──constraint_0_name
+      │   │   ├──constraint_0_power_limit_uw
+      │   │   ├──constraint_0_time_window_us
+      │   │   ├──constraint_1_name
+      │   │   ├──constraint_1_power_limit_uw
+      │   │   ├──constraint_1_time_window_us
+      │   │   ├──device -> ../../intel-rapl:0
+      │   │   ├──energy_uj
+      │   │   ├──max_energy_range_uj
+      │   │   ├──name
+      │   │   ├──enabled
+      │   │   ├──power
+      │   │   │   ├──async
+      │   │   │   []
+      │   │   ├──subsystem -> ../../../../../../class/power_cap
+      │   │   └──uevent
+      │   ├──intel-rapl:0:1
+      │   │   ├──constraint_0_name
+      │   │   ├──constraint_0_power_limit_uw
+      │   │   ├──constraint_0_time_window_us
+      │   │   ├──constraint_1_name
+      │   │   ├──constraint_1_power_limit_uw
+      │   │   ├──constraint_1_time_window_us
+      │   │   ├──device -> ../../intel-rapl:0
+      │   │   ├──energy_uj
+      │   │   ├──max_energy_range_uj
+      │   │   ├──name
+      │   │   ├──enabled
+      │   │   ├──power
+      │   │   │   ├──async
+      │   │   │   []
+      │   │   ├──subsystem -> ../../../../../../class/power_cap
+      │   │   └──uevent
+      │   ├──max_energy_range_uj
+      │   ├──max_power_range_uw
+      │   ├──name
+      │   ├──enabled
+      │   ├──power
+      │   │   ├──async
+      │   │   []
+      │   ├──subsystem -> ../../../../../class/power_cap
+      │   ├──enabled
+      │   ├──uevent
+      ├──intel-rapl:1
+      │   ├──constraint_0_name
+      │   ├──constraint_0_power_limit_uw
+      │   ├──constraint_0_time_window_us
+      │   ├──constraint_1_name
+      │   ├──constraint_1_power_limit_uw
+      │   ├──constraint_1_time_window_us
+      │   ├──device -> ../../intel-rapl
+      │   ├──energy_uj
+      │   ├──intel-rapl:1:0
+      │   │   ├──constraint_0_name
+      │   │   ├──constraint_0_power_limit_uw
+      │   │   ├──constraint_0_time_window_us
+      │   │   ├──constraint_1_name
+      │   │   ├──constraint_1_power_limit_uw
+      │   │   ├──constraint_1_time_window_us
+      │   │   ├──device -> ../../intel-rapl:1
+      │   │   ├──energy_uj
+      │   │   ├──max_energy_range_uj
+      │   │   ├──name
+      │   │   ├──enabled
+      │   │   ├──power
+      │   │   │   ├──async
+      │   │   │   []
+      │   │   ├──subsystem -> ../../../../../../class/power_cap
+      │   │   └──uevent
+      │   ├──intel-rapl:1:1
+      │   │   ├──constraint_0_name
+      │   │   ├──constraint_0_power_limit_uw
+      │   │   ├──constraint_0_time_window_us
+      │   │   ├──constraint_1_name
+      │   │   ├──constraint_1_power_limit_uw
+      │   │   ├──constraint_1_time_window_us
+      │   │   ├──device -> ../../intel-rapl:1
+      │   │   ├──energy_uj
+      │   │   ├──max_energy_range_uj
+      │   │   ├──name
+      │   │   ├──enabled
+      │   │   ├──power
+      │   │   │   ├──async
+      │   │   │   []
+      │   │   ├──subsystem -> ../../../../../../class/power_cap
+      │   │   └──uevent
+      │   ├──max_energy_range_uj
+      │   ├──max_power_range_uw
+      │   ├──name
+      │   ├──enabled
+      │   ├──power
+      │   │   ├──async
+      │   │   []
+      │   ├──subsystem -> ../../../../../class/power_cap
+      │   ├──uevent
+      ├──power
+      │   ├──async
+      │   []
+      ├──subsystem -> ../../../../class/power_cap
+      ├──enabled
+      └──uevent
+
+The above example illustrates a case in which the Intel RAPL technology,
+available in Intel® IA-64 and IA-32 Processor Architectures, is used. There is one
+control type called intel-rapl which contains two power zones, intel-rapl:0 and
+intel-rapl:1, representing CPU packages.  Each of these power zones contains
+two subzones, intel-rapl:j:0 and intel-rapl:j:1 (j = 0, 1), representing the
+"core" and the "uncore" parts of the given CPU package, respectively.  All of
+the zones and subzones contain energy monitoring attributes (energy_uj,
+max_energy_range_uj) and constraint attributes (constraint_*) allowing controls
+to be applied (the constraints in the 'package' power zones apply to the whole
+CPU packages and the subzone constraints only apply to the respective parts of
+the given package individually). Since Intel RAPL doesn't provide instantaneous
+power value, there is no power_uw attribute.
+
+In addition to that, each power zone contains a name attribute, allowing the
+part of the system represented by that zone to be identified.
+For example::
+
+       cat /sys/class/power_cap/intel-rapl/intel-rapl:0/name
+
+package-0
+---------
+
+The Intel RAPL technology allows two constraints, short term and long term,
+with two different time windows to be applied to each power zone.  Thus for
+each zone there are 2 attributes representing the constraint names, 2 power
+limits and 2 attributes representing the sizes of the time windows. Such that,
+constraint_j_* attributes correspond to the jth constraint (j = 0,1).
+
+For example::
+
+       constraint_0_name
+       constraint_0_power_limit_uw
+       constraint_0_time_window_us
+       constraint_1_name
+       constraint_1_power_limit_uw
+       constraint_1_time_window_us
+
+Power Zone Attributes
+=====================
+
+Monitoring attributes
+---------------------
+
+energy_uj (rw)
+       Current energy counter in micro joules. Write "0" to reset.
+       If the counter can not be reset, then this attribute is read only.
+
+max_energy_range_uj (ro)
+       Range of the above energy counter in micro-joules.
+
+power_uw (ro)
+       Current power in micro watts.
+
+max_power_range_uw (ro)
+       Range of the above power value in micro-watts.
+
+name (ro)
+       Name of this power zone.
+
+It is possible that some domains have both power ranges and energy counter ranges;
+however, only one is mandatory.
+
+Constraints
+-----------
+
+constraint_X_power_limit_uw (rw)
+       Power limit in micro watts, which should be applicable for the
+       time window specified by "constraint_X_time_window_us".
+
+constraint_X_time_window_us (rw)
+       Time window in micro seconds.
+
+constraint_X_name (ro)
+       An optional name of the constraint
+
+constraint_X_max_power_uw(ro)
+       Maximum allowed power in micro watts.
+
+constraint_X_min_power_uw(ro)
+       Minimum allowed power in micro watts.
+
+constraint_X_max_time_window_us(ro)
+       Maximum allowed time window in micro seconds.
+
+constraint_X_min_time_window_us(ro)
+       Minimum allowed time window in micro seconds.
+
+Except power_limit_uw and time_window_us other fields are optional.
+
+Common zone and control type attributes
+---------------------------------------
+
+enabled (rw): Enable/Disable controls at zone level or for all zones using
+a control type.
+
+Power Cap Client Driver Interface
+=================================
+
+The API summary:
+
+Call powercap_register_control_type() to register control type object.
+Call powercap_register_zone() to register a power zone (under a given
+control type), either as a top-level power zone or as a subzone of another
+power zone registered earlier.
+The number of constraints in a power zone and the corresponding callbacks have
+to be defined prior to calling powercap_register_zone() to register that zone.
+
+To Free a power zone call powercap_unregister_zone().
+To free a control type object call powercap_unregister_control_type().
+Detailed API can be generated using kernel-doc on include/linux/powercap.h.
diff --git a/Documentation/power/powercap/powercap.txt b/Documentation/power/powercap/powercap.txt
deleted file mode 100644 (file)
index 1e6ef16..0000000
+++ /dev/null
@@ -1,236 +0,0 @@
-Power Capping Framework
-==================================
-
-The power capping framework provides a consistent interface between the kernel
-and the user space that allows power capping drivers to expose the settings to
-user space in a uniform way.
-
-Terminology
-=========================
-The framework exposes power capping devices to user space via sysfs in the
-form of a tree of objects. The objects at the root level of the tree represent
-'control types', which correspond to different methods of power capping.  For
-example, the intel-rapl control type represents the Intel "Running Average
-Power Limit" (RAPL) technology, whereas the 'idle-injection' control type
-corresponds to the use of idle injection for controlling power.
-
-Power zones represent different parts of the system, which can be controlled and
-monitored using the power capping method determined by the control type the
-given zone belongs to. They each contain attributes for monitoring power, as
-well as controls represented in the form of power constraints.  If the parts of
-the system represented by different power zones are hierarchical (that is, one
-bigger part consists of multiple smaller parts that each have their own power
-controls), those power zones may also be organized in a hierarchy with one
-parent power zone containing multiple subzones and so on to reflect the power
-control topology of the system.  In that case, it is possible to apply power
-capping to a set of devices together using the parent power zone and if more
-fine grained control is required, it can be applied through the subzones.
-
-
-Example sysfs interface tree:
-
-/sys/devices/virtual/powercap
-??? intel-rapl
-    ??? intel-rapl:0
-    ?   ??? constraint_0_name
-    ?   ??? constraint_0_power_limit_uw
-    ?   ??? constraint_0_time_window_us
-    ?   ??? constraint_1_name
-    ?   ??? constraint_1_power_limit_uw
-    ?   ??? constraint_1_time_window_us
-    ?   ??? device -> ../../intel-rapl
-    ?   ??? energy_uj
-    ?   ??? intel-rapl:0:0
-    ?   ?   ??? constraint_0_name
-    ?   ?   ??? constraint_0_power_limit_uw
-    ?   ?   ??? constraint_0_time_window_us
-    ?   ?   ??? constraint_1_name
-    ?   ?   ??? constraint_1_power_limit_uw
-    ?   ?   ??? constraint_1_time_window_us
-    ?   ?   ??? device -> ../../intel-rapl:0
-    ?   ?   ??? energy_uj
-    ?   ?   ??? max_energy_range_uj
-    ?   ?   ??? name
-    ?   ?   ??? enabled
-    ?   ?   ??? power
-    ?   ?   ?   ??? async
-    ?   ?   ?   []
-    ?   ?   ??? subsystem -> ../../../../../../class/power_cap
-    ?   ?   ??? uevent
-    ?   ??? intel-rapl:0:1
-    ?   ?   ??? constraint_0_name
-    ?   ?   ??? constraint_0_power_limit_uw
-    ?   ?   ??? constraint_0_time_window_us
-    ?   ?   ??? constraint_1_name
-    ?   ?   ??? constraint_1_power_limit_uw
-    ?   ?   ??? constraint_1_time_window_us
-    ?   ?   ??? device -> ../../intel-rapl:0
-    ?   ?   ??? energy_uj
-    ?   ?   ??? max_energy_range_uj
-    ?   ?   ??? name
-    ?   ?   ??? enabled
-    ?   ?   ??? power
-    ?   ?   ?   ??? async
-    ?   ?   ?   []
-    ?   ?   ??? subsystem -> ../../../../../../class/power_cap
-    ?   ?   ??? uevent
-    ?   ??? max_energy_range_uj
-    ?   ??? max_power_range_uw
-    ?   ??? name
-    ?   ??? enabled
-    ?   ??? power
-    ?   ?   ??? async
-    ?   ?   []
-    ?   ??? subsystem -> ../../../../../class/power_cap
-    ?   ??? enabled
-    ?   ??? uevent
-    ??? intel-rapl:1
-    ?   ??? constraint_0_name
-    ?   ??? constraint_0_power_limit_uw
-    ?   ??? constraint_0_time_window_us
-    ?   ??? constraint_1_name
-    ?   ??? constraint_1_power_limit_uw
-    ?   ??? constraint_1_time_window_us
-    ?   ??? device -> ../../intel-rapl
-    ?   ??? energy_uj
-    ?   ??? intel-rapl:1:0
-    ?   ?   ??? constraint_0_name
-    ?   ?   ??? constraint_0_power_limit_uw
-    ?   ?   ??? constraint_0_time_window_us
-    ?   ?   ??? constraint_1_name
-    ?   ?   ??? constraint_1_power_limit_uw
-    ?   ?   ??? constraint_1_time_window_us
-    ?   ?   ??? device -> ../../intel-rapl:1
-    ?   ?   ??? energy_uj
-    ?   ?   ??? max_energy_range_uj
-    ?   ?   ??? name
-    ?   ?   ??? enabled
-    ?   ?   ??? power
-    ?   ?   ?   ??? async
-    ?   ?   ?   []
-    ?   ?   ??? subsystem -> ../../../../../../class/power_cap
-    ?   ?   ??? uevent
-    ?   ??? intel-rapl:1:1
-    ?   ?   ??? constraint_0_name
-    ?   ?   ??? constraint_0_power_limit_uw
-    ?   ?   ??? constraint_0_time_window_us
-    ?   ?   ??? constraint_1_name
-    ?   ?   ??? constraint_1_power_limit_uw
-    ?   ?   ??? constraint_1_time_window_us
-    ?   ?   ??? device -> ../../intel-rapl:1
-    ?   ?   ??? energy_uj
-    ?   ?   ??? max_energy_range_uj
-    ?   ?   ??? name
-    ?   ?   ??? enabled
-    ?   ?   ??? power
-    ?   ?   ?   ??? async
-    ?   ?   ?   []
-    ?   ?   ??? subsystem -> ../../../../../../class/power_cap
-    ?   ?   ??? uevent
-    ?   ??? max_energy_range_uj
-    ?   ??? max_power_range_uw
-    ?   ??? name
-    ?   ??? enabled
-    ?   ??? power
-    ?   ?   ??? async
-    ?   ?   []
-    ?   ??? subsystem -> ../../../../../class/power_cap
-    ?   ??? uevent
-    ??? power
-    ?   ??? async
-    ?   []
-    ??? subsystem -> ../../../../class/power_cap
-    ??? enabled
-    ??? uevent
-
-The above example illustrates a case in which the Intel RAPL technology,
-available in Intel® IA-64 and IA-32 Processor Architectures, is used. There is one
-control type called intel-rapl which contains two power zones, intel-rapl:0 and
-intel-rapl:1, representing CPU packages.  Each of these power zones contains
-two subzones, intel-rapl:j:0 and intel-rapl:j:1 (j = 0, 1), representing the
-"core" and the "uncore" parts of the given CPU package, respectively.  All of
-the zones and subzones contain energy monitoring attributes (energy_uj,
-max_energy_range_uj) and constraint attributes (constraint_*) allowing controls
-to be applied (the constraints in the 'package' power zones apply to the whole
-CPU packages and the subzone constraints only apply to the respective parts of
-the given package individually). Since Intel RAPL doesn't provide instantaneous
-power value, there is no power_uw attribute.
-
-In addition to that, each power zone contains a name attribute, allowing the
-part of the system represented by that zone to be identified.
-For example:
-
-cat /sys/class/power_cap/intel-rapl/intel-rapl:0/name
-package-0
-
-The Intel RAPL technology allows two constraints, short term and long term,
-with two different time windows to be applied to each power zone.  Thus for
-each zone there are 2 attributes representing the constraint names, 2 power
-limits and 2 attributes representing the sizes of the time windows. Such that,
-constraint_j_* attributes correspond to the jth constraint (j = 0,1).
-
-For example:
-       constraint_0_name
-       constraint_0_power_limit_uw
-       constraint_0_time_window_us
-       constraint_1_name
-       constraint_1_power_limit_uw
-       constraint_1_time_window_us
-
-Power Zone Attributes
-=================================
-Monitoring attributes
-----------------------
-
-energy_uj (rw): Current energy counter in micro joules. Write "0" to reset.
-If the counter can not be reset, then this attribute is read only.
-
-max_energy_range_uj (ro): Range of the above energy counter in micro-joules.
-
-power_uw (ro): Current power in micro watts.
-
-max_power_range_uw (ro): Range of the above power value in micro-watts.
-
-name (ro): Name of this power zone.
-
-It is possible that some domains have both power ranges and energy counter ranges;
-however, only one is mandatory.
-
-Constraints
-----------------
-constraint_X_power_limit_uw (rw): Power limit in micro watts, which should be
-applicable for the time window specified by "constraint_X_time_window_us".
-
-constraint_X_time_window_us (rw): Time window in micro seconds.
-
-constraint_X_name (ro): An optional name of the constraint
-
-constraint_X_max_power_uw(ro): Maximum allowed power in micro watts.
-
-constraint_X_min_power_uw(ro): Minimum allowed power in micro watts.
-
-constraint_X_max_time_window_us(ro): Maximum allowed time window in micro seconds.
-
-constraint_X_min_time_window_us(ro): Minimum allowed time window in micro seconds.
-
-Except power_limit_uw and time_window_us other fields are optional.
-
-Common zone and control type attributes
-----------------------------------------
-enabled (rw): Enable/Disable controls at zone level or for all zones using
-a control type.
-
-Power Cap Client Driver Interface
-==================================
-The API summary:
-
-Call powercap_register_control_type() to register control type object.
-Call powercap_register_zone() to register a power zone (under a given
-control type), either as a top-level power zone or as a subzone of another
-power zone registered earlier.
-The number of constraints in a power zone and the corresponding callbacks have
-to be defined prior to calling powercap_register_zone() to register that zone.
-
-To Free a power zone call powercap_unregister_zone().
-To free a control type object call powercap_unregister_control_type().
-Detailed API can be generated using kernel-doc on include/linux/powercap.h.
diff --git a/Documentation/power/regulator/consumer.rst b/Documentation/power/regulator/consumer.rst
new file mode 100644 (file)
index 0000000..0cd8cc1
--- /dev/null
@@ -0,0 +1,229 @@
+===================================
+Regulator Consumer Driver Interface
+===================================
+
+This text describes the regulator interface for consumer device drivers.
+Please see overview.txt for a description of the terms used in this text.
+
+
+1. Consumer Regulator Access (static & dynamic drivers)
+=======================================================
+
+A consumer driver can get access to its supply regulator by calling ::
+
+       regulator = regulator_get(dev, "Vcc");
+
+The consumer passes in its struct device pointer and power supply ID. The core
+then finds the correct regulator by consulting a machine specific lookup table.
+If the lookup is successful then this call will return a pointer to the struct
+regulator that supplies this consumer.
+
+To release the regulator the consumer driver should call ::
+
+       regulator_put(regulator);
+
+Consumers can be supplied by more than one regulator e.g. codec consumer with
+analog and digital supplies ::
+
+       digital = regulator_get(dev, "Vcc");  /* digital core */
+       analog = regulator_get(dev, "Avdd");  /* analog */
+
+The regulator access functions regulator_get() and regulator_put() will
+usually be called in your device drivers probe() and remove() respectively.
+
+
+2. Regulator Output Enable & Disable (static & dynamic drivers)
+===============================================================
+
+
+A consumer can enable its power supply by calling::
+
+       int regulator_enable(regulator);
+
+NOTE:
+  The supply may already be enabled before regulator_enabled() is called.
+  This may happen if the consumer shares the regulator or the regulator has been
+  previously enabled by bootloader or kernel board initialization code.
+
+A consumer can determine if a regulator is enabled by calling::
+
+       int regulator_is_enabled(regulator);
+
+This will return > zero when the regulator is enabled.
+
+
+A consumer can disable its supply when no longer needed by calling::
+
+       int regulator_disable(regulator);
+
+NOTE:
+  This may not disable the supply if it's shared with other consumers. The
+  regulator will only be disabled when the enabled reference count is zero.
+
+Finally, a regulator can be forcefully disabled in the case of an emergency::
+
+       int regulator_force_disable(regulator);
+
+NOTE:
+  this will immediately and forcefully shutdown the regulator output. All
+  consumers will be powered off.
+
+
+3. Regulator Voltage Control & Status (dynamic drivers)
+=======================================================
+
+Some consumer drivers need to be able to dynamically change their supply
+voltage to match system operating points. e.g. CPUfreq drivers can scale
+voltage along with frequency to save power, SD drivers may need to select the
+correct card voltage, etc.
+
+Consumers can control their supply voltage by calling::
+
+       int regulator_set_voltage(regulator, min_uV, max_uV);
+
+Where min_uV and max_uV are the minimum and maximum acceptable voltages in
+microvolts.
+
+NOTE: this can be called when the regulator is enabled or disabled. If called
+when enabled, then the voltage changes instantly, otherwise the voltage
+configuration changes and the voltage is physically set when the regulator is
+next enabled.
+
+The regulators configured voltage output can be found by calling::
+
+       int regulator_get_voltage(regulator);
+
+NOTE:
+  get_voltage() will return the configured output voltage whether the
+  regulator is enabled or disabled and should NOT be used to determine regulator
+  output state. However this can be used in conjunction with is_enabled() to
+  determine the regulator physical output voltage.
+
+
+4. Regulator Current Limit Control & Status (dynamic drivers)
+=============================================================
+
+Some consumer drivers need to be able to dynamically change their supply
+current limit to match system operating points. e.g. LCD backlight driver can
+change the current limit to vary the backlight brightness, USB drivers may want
+to set the limit to 500mA when supplying power.
+
+Consumers can control their supply current limit by calling::
+
+       int regulator_set_current_limit(regulator, min_uA, max_uA);
+
+Where min_uA and max_uA are the minimum and maximum acceptable current limit in
+microamps.
+
+NOTE:
+  this can be called when the regulator is enabled or disabled. If called
+  when enabled, then the current limit changes instantly, otherwise the current
+  limit configuration changes and the current limit is physically set when the
+  regulator is next enabled.
+
+A regulators current limit can be found by calling::
+
+       int regulator_get_current_limit(regulator);
+
+NOTE:
+  get_current_limit() will return the current limit whether the regulator
+  is enabled or disabled and should not be used to determine regulator current
+  load.
+
+
+5. Regulator Operating Mode Control & Status (dynamic drivers)
+==============================================================
+
+Some consumers can further save system power by changing the operating mode of
+their supply regulator to be more efficient when the consumers operating state
+changes. e.g. consumer driver is idle and subsequently draws less current
+
+Regulator operating mode can be changed indirectly or directly.
+
+Indirect operating mode control.
+--------------------------------
+Consumer drivers can request a change in their supply regulator operating mode
+by calling::
+
+       int regulator_set_load(struct regulator *regulator, int load_uA);
+
+This will cause the core to recalculate the total load on the regulator (based
+on all its consumers) and change operating mode (if necessary and permitted)
+to best match the current operating load.
+
+The load_uA value can be determined from the consumer's datasheet. e.g. most
+datasheets have tables showing the maximum current consumed in certain
+situations.
+
+Most consumers will use indirect operating mode control since they have no
+knowledge of the regulator or whether the regulator is shared with other
+consumers.
+
+Direct operating mode control.
+------------------------------
+
+Bespoke or tightly coupled drivers may want to directly control regulator
+operating mode depending on their operating point. This can be achieved by
+calling::
+
+       int regulator_set_mode(struct regulator *regulator, unsigned int mode);
+       unsigned int regulator_get_mode(struct regulator *regulator);
+
+Direct mode will only be used by consumers that *know* about the regulator and
+are not sharing the regulator with other consumers.
+
+
+6. Regulator Events
+===================
+
+Regulators can notify consumers of external events. Events could be received by
+consumers under regulator stress or failure conditions.
+
+Consumers can register interest in regulator events by calling::
+
+       int regulator_register_notifier(struct regulator *regulator,
+                                       struct notifier_block *nb);
+
+Consumers can unregister interest by calling::
+
+       int regulator_unregister_notifier(struct regulator *regulator,
+                                         struct notifier_block *nb);
+
+Regulators use the kernel notifier framework to send event to their interested
+consumers.
+
+7. Regulator Direct Register Access
+===================================
+
+Some kinds of power management hardware or firmware are designed such that
+they need to do low-level hardware access to regulators, with no involvement
+from the kernel. Examples of such devices are:
+
+- clocksource with a voltage-controlled oscillator and control logic to change
+  the supply voltage over I2C to achieve a desired output clock rate
+- thermal management firmware that can issue an arbitrary I2C transaction to
+  perform system poweroff during overtemperature conditions
+
+To set up such a device/firmware, various parameters like I2C address of the
+regulator, addresses of various regulator registers etc. need to be configured
+to it. The regulator framework provides the following helpers for querying
+these details.
+
+Bus-specific details, like I2C addresses or transfer rates are handled by the
+regmap framework. To get the regulator's regmap (if supported), use::
+
+       struct regmap *regulator_get_regmap(struct regulator *regulator);
+
+To obtain the hardware register offset and bitmask for the regulator's voltage
+selector register, use::
+
+       int regulator_get_hardware_vsel_register(struct regulator *regulator,
+                                                unsigned *vsel_reg,
+                                                unsigned *vsel_mask);
+
+To convert a regulator framework voltage selector code (used by
+regulator_list_voltage) to a hardware-specific voltage selector that can be
+directly written to the voltage selector register, use::
+
+       int regulator_list_hardware_vsel(struct regulator *regulator,
+                                        unsigned selector);
diff --git a/Documentation/power/regulator/consumer.txt b/Documentation/power/regulator/consumer.txt
deleted file mode 100644 (file)
index e51564c..0000000
+++ /dev/null
@@ -1,218 +0,0 @@
-Regulator Consumer Driver Interface
-===================================
-
-This text describes the regulator interface for consumer device drivers.
-Please see overview.txt for a description of the terms used in this text.
-
-
-1. Consumer Regulator Access (static & dynamic drivers)
-=======================================================
-
-A consumer driver can get access to its supply regulator by calling :-
-
-regulator = regulator_get(dev, "Vcc");
-
-The consumer passes in its struct device pointer and power supply ID. The core
-then finds the correct regulator by consulting a machine specific lookup table.
-If the lookup is successful then this call will return a pointer to the struct
-regulator that supplies this consumer.
-
-To release the regulator the consumer driver should call :-
-
-regulator_put(regulator);
-
-Consumers can be supplied by more than one regulator e.g. codec consumer with
-analog and digital supplies :-
-
-digital = regulator_get(dev, "Vcc");  /* digital core */
-analog = regulator_get(dev, "Avdd");  /* analog */
-
-The regulator access functions regulator_get() and regulator_put() will
-usually be called in your device drivers probe() and remove() respectively.
-
-
-2. Regulator Output Enable & Disable (static & dynamic drivers)
-====================================================================
-
-A consumer can enable its power supply by calling:-
-
-int regulator_enable(regulator);
-
-NOTE: The supply may already be enabled before regulator_enabled() is called.
-This may happen if the consumer shares the regulator or the regulator has been
-previously enabled by bootloader or kernel board initialization code.
-
-A consumer can determine if a regulator is enabled by calling :-
-
-int regulator_is_enabled(regulator);
-
-This will return > zero when the regulator is enabled.
-
-
-A consumer can disable its supply when no longer needed by calling :-
-
-int regulator_disable(regulator);
-
-NOTE: This may not disable the supply if it's shared with other consumers. The
-regulator will only be disabled when the enabled reference count is zero.
-
-Finally, a regulator can be forcefully disabled in the case of an emergency :-
-
-int regulator_force_disable(regulator);
-
-NOTE: this will immediately and forcefully shutdown the regulator output. All
-consumers will be powered off.
-
-
-3. Regulator Voltage Control & Status (dynamic drivers)
-======================================================
-
-Some consumer drivers need to be able to dynamically change their supply
-voltage to match system operating points. e.g. CPUfreq drivers can scale
-voltage along with frequency to save power, SD drivers may need to select the
-correct card voltage, etc.
-
-Consumers can control their supply voltage by calling :-
-
-int regulator_set_voltage(regulator, min_uV, max_uV);
-
-Where min_uV and max_uV are the minimum and maximum acceptable voltages in
-microvolts.
-
-NOTE: this can be called when the regulator is enabled or disabled. If called
-when enabled, then the voltage changes instantly, otherwise the voltage
-configuration changes and the voltage is physically set when the regulator is
-next enabled.
-
-The regulators configured voltage output can be found by calling :-
-
-int regulator_get_voltage(regulator);
-
-NOTE: get_voltage() will return the configured output voltage whether the
-regulator is enabled or disabled and should NOT be used to determine regulator
-output state. However this can be used in conjunction with is_enabled() to
-determine the regulator physical output voltage.
-
-
-4. Regulator Current Limit Control & Status (dynamic drivers)
-===========================================================
-
-Some consumer drivers need to be able to dynamically change their supply
-current limit to match system operating points. e.g. LCD backlight driver can
-change the current limit to vary the backlight brightness, USB drivers may want
-to set the limit to 500mA when supplying power.
-
-Consumers can control their supply current limit by calling :-
-
-int regulator_set_current_limit(regulator, min_uA, max_uA);
-
-Where min_uA and max_uA are the minimum and maximum acceptable current limit in
-microamps.
-
-NOTE: this can be called when the regulator is enabled or disabled. If called
-when enabled, then the current limit changes instantly, otherwise the current
-limit configuration changes and the current limit is physically set when the
-regulator is next enabled.
-
-A regulators current limit can be found by calling :-
-
-int regulator_get_current_limit(regulator);
-
-NOTE: get_current_limit() will return the current limit whether the regulator
-is enabled or disabled and should not be used to determine regulator current
-load.
-
-
-5. Regulator Operating Mode Control & Status (dynamic drivers)
-=============================================================
-
-Some consumers can further save system power by changing the operating mode of
-their supply regulator to be more efficient when the consumers operating state
-changes. e.g. consumer driver is idle and subsequently draws less current
-
-Regulator operating mode can be changed indirectly or directly.
-
-Indirect operating mode control.
---------------------------------
-Consumer drivers can request a change in their supply regulator operating mode
-by calling :-
-
-int regulator_set_load(struct regulator *regulator, int load_uA);
-
-This will cause the core to recalculate the total load on the regulator (based
-on all its consumers) and change operating mode (if necessary and permitted)
-to best match the current operating load.
-
-The load_uA value can be determined from the consumer's datasheet. e.g. most
-datasheets have tables showing the maximum current consumed in certain
-situations.
-
-Most consumers will use indirect operating mode control since they have no
-knowledge of the regulator or whether the regulator is shared with other
-consumers.
-
-Direct operating mode control.
-------------------------------
-Bespoke or tightly coupled drivers may want to directly control regulator
-operating mode depending on their operating point. This can be achieved by
-calling :-
-
-int regulator_set_mode(struct regulator *regulator, unsigned int mode);
-unsigned int regulator_get_mode(struct regulator *regulator);
-
-Direct mode will only be used by consumers that *know* about the regulator and
-are not sharing the regulator with other consumers.
-
-
-6. Regulator Events
-===================
-Regulators can notify consumers of external events. Events could be received by
-consumers under regulator stress or failure conditions.
-
-Consumers can register interest in regulator events by calling :-
-
-int regulator_register_notifier(struct regulator *regulator,
-                             struct notifier_block *nb);
-
-Consumers can unregister interest by calling :-
-
-int regulator_unregister_notifier(struct regulator *regulator,
-                               struct notifier_block *nb);
-
-Regulators use the kernel notifier framework to send event to their interested
-consumers.
-
-7. Regulator Direct Register Access
-===================================
-Some kinds of power management hardware or firmware are designed such that
-they need to do low-level hardware access to regulators, with no involvement
-from the kernel. Examples of such devices are:
-
-- clocksource with a voltage-controlled oscillator and control logic to change
-  the supply voltage over I2C to achieve a desired output clock rate
-- thermal management firmware that can issue an arbitrary I2C transaction to
-  perform system poweroff during overtemperature conditions
-
-To set up such a device/firmware, various parameters like I2C address of the
-regulator, addresses of various regulator registers etc. need to be configured
-to it. The regulator framework provides the following helpers for querying
-these details.
-
-Bus-specific details, like I2C addresses or transfer rates are handled by the
-regmap framework. To get the regulator's regmap (if supported), use :-
-
-struct regmap *regulator_get_regmap(struct regulator *regulator);
-
-To obtain the hardware register offset and bitmask for the regulator's voltage
-selector register, use :-
-
-int regulator_get_hardware_vsel_register(struct regulator *regulator,
-                                        unsigned *vsel_reg,
-                                        unsigned *vsel_mask);
-
-To convert a regulator framework voltage selector code (used by
-regulator_list_voltage) to a hardware-specific voltage selector that can be
-directly written to the voltage selector register, use :-
-
-int regulator_list_hardware_vsel(struct regulator *regulator,
-                                unsigned selector);
diff --git a/Documentation/power/regulator/design.rst b/Documentation/power/regulator/design.rst
new file mode 100644 (file)
index 0000000..3b09c68
--- /dev/null
@@ -0,0 +1,38 @@
+==========================
+Regulator API design notes
+==========================
+
+This document provides a brief, partially structured, overview of some
+of the design considerations which impact the regulator API design.
+
+Safety
+------
+
+ - Errors in regulator configuration can have very serious consequences
+   for the system, potentially including lasting hardware damage.
+ - It is not possible to automatically determine the power configuration
+   of the system - software-equivalent variants of the same chip may
+   have different power requirements, and not all components with power
+   requirements are visible to software.
+
+.. note::
+
+     The API should make no changes to the hardware state unless it has
+     specific knowledge that these changes are safe to perform on this
+     particular system.
+
+Consumer use cases
+------------------
+
+ - The overwhelming majority of devices in a system will have no
+   requirement to do any runtime configuration of their power beyond
+   being able to turn it on or off.
+
+ - Many of the power supplies in the system will be shared between many
+   different consumers.
+
+.. note::
+
+     The consumer API should be structured so that these use cases are
+     very easy to handle and so that consumers will work with shared
+     supplies without any additional effort.
diff --git a/Documentation/power/regulator/design.txt b/Documentation/power/regulator/design.txt
deleted file mode 100644 (file)
index fdd919b..0000000
+++ /dev/null
@@ -1,33 +0,0 @@
-Regulator API design notes
-==========================
-
-This document provides a brief, partially structured, overview of some
-of the design considerations which impact the regulator API design.
-
-Safety
-------
-
- - Errors in regulator configuration can have very serious consequences
-   for the system, potentially including lasting hardware damage.
- - It is not possible to automatically determine the power configuration
-   of the system - software-equivalent variants of the same chip may
-   have different power requirements, and not all components with power
-   requirements are visible to software.
-
-  => The API should make no changes to the hardware state unless it has
-     specific knowledge that these changes are safe to perform on this
-     particular system.
-
-Consumer use cases
-------------------
-
- - The overwhelming majority of devices in a system will have no
-   requirement to do any runtime configuration of their power beyond
-   being able to turn it on or off.
-
- - Many of the power supplies in the system will be shared between many
-   different consumers.
-
-  => The consumer API should be structured so that these use cases are
-     very easy to handle and so that consumers will work with shared
-     supplies without any additional effort.
diff --git a/Documentation/power/regulator/machine.rst b/Documentation/power/regulator/machine.rst
new file mode 100644 (file)
index 0000000..22fffef
--- /dev/null
@@ -0,0 +1,97 @@
+==================================
+Regulator Machine Driver Interface
+==================================
+
+The regulator machine driver interface is intended for board/machine specific
+initialisation code to configure the regulator subsystem.
+
+Consider the following machine::
+
+  Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V]
+               |
+               +-> [Consumer B @ 3.3V]
+
+The drivers for consumers A & B must be mapped to the correct regulator in
+order to control their power supplies. This mapping can be achieved in machine
+initialisation code by creating a struct regulator_consumer_supply for
+each regulator::
+
+  struct regulator_consumer_supply {
+       const char *dev_name;   /* consumer dev_name() */
+       const char *supply;     /* consumer supply - e.g. "vcc" */
+  };
+
+e.g. for the machine above::
+
+  static struct regulator_consumer_supply regulator1_consumers[] = {
+       REGULATOR_SUPPLY("Vcc", "consumer B"),
+  };
+
+  static struct regulator_consumer_supply regulator2_consumers[] = {
+       REGULATOR_SUPPLY("Vcc", "consumer A"),
+  };
+
+This maps Regulator-1 to the 'Vcc' supply for Consumer B and maps Regulator-2
+to the 'Vcc' supply for Consumer A.
+
+Constraints can now be registered by defining a struct regulator_init_data
+for each regulator power domain. This structure also maps the consumers
+to their supply regulators::
+
+  static struct regulator_init_data regulator1_data = {
+       .constraints = {
+               .name = "Regulator-1",
+               .min_uV = 3300000,
+               .max_uV = 3300000,
+               .valid_modes_mask = REGULATOR_MODE_NORMAL,
+       },
+       .num_consumer_supplies = ARRAY_SIZE(regulator1_consumers),
+       .consumer_supplies = regulator1_consumers,
+  };
+
+The name field should be set to something that is usefully descriptive
+for the board for configuration of supplies for other regulators and
+for use in logging and other diagnostic output.  Normally the name
+used for the supply rail in the schematic is a good choice.  If no
+name is provided then the subsystem will choose one.
+
+Regulator-1 supplies power to Regulator-2. This relationship must be registered
+with the core so that Regulator-1 is also enabled when Consumer A enables its
+supply (Regulator-2). The supply regulator is set by the supply_regulator
+field below and co::
+
+  static struct regulator_init_data regulator2_data = {
+       .supply_regulator = "Regulator-1",
+       .constraints = {
+               .min_uV = 1800000,
+               .max_uV = 2000000,
+               .valid_ops_mask = REGULATOR_CHANGE_VOLTAGE,
+               .valid_modes_mask = REGULATOR_MODE_NORMAL,
+       },
+       .num_consumer_supplies = ARRAY_SIZE(regulator2_consumers),
+       .consumer_supplies = regulator2_consumers,
+  };
+
+Finally the regulator devices must be registered in the usual manner::
+
+  static struct platform_device regulator_devices[] = {
+       {
+               .name = "regulator",
+               .id = DCDC_1,
+               .dev = {
+                       .platform_data = &regulator1_data,
+               },
+       },
+       {
+               .name = "regulator",
+               .id = DCDC_2,
+               .dev = {
+                       .platform_data = &regulator2_data,
+               },
+       },
+  };
+  /* register regulator 1 device */
+  platform_device_register(&regulator_devices[0]);
+
+  /* register regulator 2 device */
+  platform_device_register(&regulator_devices[1]);
diff --git a/Documentation/power/regulator/machine.txt b/Documentation/power/regulator/machine.txt
deleted file mode 100644 (file)
index eff4dca..0000000
+++ /dev/null
@@ -1,96 +0,0 @@
-Regulator Machine Driver Interface
-===================================
-
-The regulator machine driver interface is intended for board/machine specific
-initialisation code to configure the regulator subsystem.
-
-Consider the following machine :-
-
-  Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V]
-               |
-               +-> [Consumer B @ 3.3V]
-
-The drivers for consumers A & B must be mapped to the correct regulator in
-order to control their power supplies. This mapping can be achieved in machine
-initialisation code by creating a struct regulator_consumer_supply for
-each regulator.
-
-struct regulator_consumer_supply {
-       const char *dev_name;   /* consumer dev_name() */
-       const char *supply;     /* consumer supply - e.g. "vcc" */
-};
-
-e.g. for the machine above
-
-static struct regulator_consumer_supply regulator1_consumers[] = {
-       REGULATOR_SUPPLY("Vcc", "consumer B"),
-};
-
-static struct regulator_consumer_supply regulator2_consumers[] = {
-       REGULATOR_SUPPLY("Vcc", "consumer A"),
-};
-
-This maps Regulator-1 to the 'Vcc' supply for Consumer B and maps Regulator-2
-to the 'Vcc' supply for Consumer A.
-
-Constraints can now be registered by defining a struct regulator_init_data
-for each regulator power domain. This structure also maps the consumers
-to their supply regulators :-
-
-static struct regulator_init_data regulator1_data = {
-       .constraints = {
-               .name = "Regulator-1",
-               .min_uV = 3300000,
-               .max_uV = 3300000,
-               .valid_modes_mask = REGULATOR_MODE_NORMAL,
-       },
-       .num_consumer_supplies = ARRAY_SIZE(regulator1_consumers),
-       .consumer_supplies = regulator1_consumers,
-};
-
-The name field should be set to something that is usefully descriptive
-for the board for configuration of supplies for other regulators and
-for use in logging and other diagnostic output.  Normally the name
-used for the supply rail in the schematic is a good choice.  If no
-name is provided then the subsystem will choose one.
-
-Regulator-1 supplies power to Regulator-2. This relationship must be registered
-with the core so that Regulator-1 is also enabled when Consumer A enables its
-supply (Regulator-2). The supply regulator is set by the supply_regulator
-field below and co:-
-
-static struct regulator_init_data regulator2_data = {
-       .supply_regulator = "Regulator-1",
-       .constraints = {
-               .min_uV = 1800000,
-               .max_uV = 2000000,
-               .valid_ops_mask = REGULATOR_CHANGE_VOLTAGE,
-               .valid_modes_mask = REGULATOR_MODE_NORMAL,
-       },
-       .num_consumer_supplies = ARRAY_SIZE(regulator2_consumers),
-       .consumer_supplies = regulator2_consumers,
-};
-
-Finally the regulator devices must be registered in the usual manner.
-
-static struct platform_device regulator_devices[] = {
-       {
-               .name = "regulator",
-               .id = DCDC_1,
-               .dev = {
-                       .platform_data = &regulator1_data,
-               },
-       },
-       {
-               .name = "regulator",
-               .id = DCDC_2,
-               .dev = {
-                       .platform_data = &regulator2_data,
-               },
-       },
-};
-/* register regulator 1 device */
-platform_device_register(&regulator_devices[0]);
-
-/* register regulator 2 device */
-platform_device_register(&regulator_devices[1]);
diff --git a/Documentation/power/regulator/overview.rst b/Documentation/power/regulator/overview.rst
new file mode 100644 (file)
index 0000000..ee494c7
--- /dev/null
@@ -0,0 +1,178 @@
+=============================================
+Linux voltage and current regulator framework
+=============================================
+
+About
+=====
+
+This framework is designed to provide a standard kernel interface to control
+voltage and current regulators.
+
+The intention is to allow systems to dynamically control regulator power output
+in order to save power and prolong battery life. This applies to both voltage
+regulators (where voltage output is controllable) and current sinks (where
+current limit is controllable).
+
+(C) 2008  Wolfson Microelectronics PLC.
+
+Author: Liam Girdwood <lrg@slimlogic.co.uk>
+
+
+Nomenclature
+============
+
+Some terms used in this document:
+
+  - Regulator
+                 - Electronic device that supplies power to other devices.
+                   Most regulators can enable and disable their output while
+                   some can control their output voltage and or current.
+
+                   Input Voltage -> Regulator -> Output Voltage
+
+
+  - PMIC
+                 - Power Management IC. An IC that contains numerous
+                   regulators and often contains other subsystems.
+
+
+  - Consumer
+                 - Electronic device that is supplied power by a regulator.
+                   Consumers can be classified into two types:-
+
+                   Static: consumer does not change its supply voltage or
+                   current limit. It only needs to enable or disable its
+                   power supply. Its supply voltage is set by the hardware,
+                   bootloader, firmware or kernel board initialisation code.
+
+                   Dynamic: consumer needs to change its supply voltage or
+                   current limit to meet operation demands.
+
+
+  - Power Domain
+                 - Electronic circuit that is supplied its input power by the
+                   output power of a regulator, switch or by another power
+                   domain.
+
+                   The supply regulator may be behind a switch(s). i.e.::
+
+                     Regulator -+-> Switch-1 -+-> Switch-2 --> [Consumer A]
+                                |             |
+                                |             +-> [Consumer B], [Consumer C]
+                                |
+                                +-> [Consumer D], [Consumer E]
+
+                   That is one regulator and three power domains:
+
+                   - Domain 1: Switch-1, Consumers D & E.
+                   - Domain 2: Switch-2, Consumers B & C.
+                   - Domain 3: Consumer A.
+
+                   and this represents a "supplies" relationship:
+
+                   Domain-1 --> Domain-2 --> Domain-3.
+
+                   A power domain may have regulators that are supplied power
+                   by other regulators. i.e.::
+
+                     Regulator-1 -+-> Regulator-2 -+-> [Consumer A]
+                                  |
+                                  +-> [Consumer B]
+
+                   This gives us two regulators and two power domains:
+
+                   - Domain 1: Regulator-2, Consumer B.
+                   - Domain 2: Consumer A.
+
+                   and a "supplies" relationship:
+
+                   Domain-1 --> Domain-2
+
+
+  - Constraints
+                 - Constraints are used to define power levels for performance
+                   and hardware protection. Constraints exist at three levels:
+
+                   Regulator Level: This is defined by the regulator hardware
+                   operating parameters and is specified in the regulator
+                   datasheet. i.e.
+
+                     - voltage output is in the range 800mV -> 3500mV.
+                     - regulator current output limit is 20mA @ 5V but is
+                       10mA @ 10V.
+
+                   Power Domain Level: This is defined in software by kernel
+                   level board initialisation code. It is used to constrain a
+                   power domain to a particular power range. i.e.
+
+                     - Domain-1 voltage is 3300mV
+                     - Domain-2 voltage is 1400mV -> 1600mV
+                     - Domain-3 current limit is 0mA -> 20mA.
+
+                   Consumer Level: This is defined by consumer drivers
+                   dynamically setting voltage or current limit levels.
+
+                   e.g. a consumer backlight driver asks for a current increase
+                   from 5mA to 10mA to increase LCD illumination. This passes
+                   to through the levels as follows :-
+
+                   Consumer: need to increase LCD brightness. Lookup and
+                   request next current mA value in brightness table (the
+                   consumer driver could be used on several different
+                   personalities based upon the same reference device).
+
+                   Power Domain: is the new current limit within the domain
+                   operating limits for this domain and system state (e.g.
+                   battery power, USB power)
+
+                   Regulator Domains: is the new current limit within the
+                   regulator operating parameters for input/output voltage.
+
+                   If the regulator request passes all the constraint tests
+                   then the new regulator value is applied.
+
+
+Design
+======
+
+The framework is designed and targeted at SoC based devices but may also be
+relevant to non SoC devices and is split into the following four interfaces:-
+
+
+   1. Consumer driver interface.
+
+      This uses a similar API to the kernel clock interface in that consumer
+      drivers can get and put a regulator (like they can with clocks atm) and
+      get/set voltage, current limit, mode, enable and disable. This should
+      allow consumers complete control over their supply voltage and current
+      limit. This also compiles out if not in use so drivers can be reused in
+      systems with no regulator based power control.
+
+        See Documentation/power/regulator/consumer.rst
+
+   2. Regulator driver interface.
+
+      This allows regulator drivers to register their regulators and provide
+      operations to the core. It also has a notifier call chain for propagating
+      regulator events to clients.
+
+        See Documentation/power/regulator/regulator.rst
+
+   3. Machine interface.
+
+      This interface is for machine specific code and allows the creation of
+      voltage/current domains (with constraints) for each regulator. It can
+      provide regulator constraints that will prevent device damage through
+      overvoltage or overcurrent caused by buggy client drivers. It also
+      allows the creation of a regulator tree whereby some regulators are
+      supplied by others (similar to a clock tree).
+
+        See Documentation/power/regulator/machine.rst
+
+   4. Userspace ABI.
+
+      The framework also exports a lot of useful voltage/current/opmode data to
+      userspace via sysfs. This could be used to help monitor device power
+      consumption and status.
+
+        See Documentation/ABI/testing/sysfs-class-regulator
diff --git a/Documentation/power/regulator/overview.txt b/Documentation/power/regulator/overview.txt
deleted file mode 100644 (file)
index 721b473..0000000
+++ /dev/null
@@ -1,171 +0,0 @@
-Linux voltage and current regulator framework
-=============================================
-
-About
-=====
-
-This framework is designed to provide a standard kernel interface to control
-voltage and current regulators.
-
-The intention is to allow systems to dynamically control regulator power output
-in order to save power and prolong battery life. This applies to both voltage
-regulators (where voltage output is controllable) and current sinks (where
-current limit is controllable).
-
-(C) 2008  Wolfson Microelectronics PLC.
-Author: Liam Girdwood <lrg@slimlogic.co.uk>
-
-
-Nomenclature
-============
-
-Some terms used in this document:-
-
-  o Regulator    - Electronic device that supplies power to other devices.
-                   Most regulators can enable and disable their output while
-                   some can control their output voltage and or current.
-
-                   Input Voltage -> Regulator -> Output Voltage
-
-
-  o PMIC         - Power Management IC. An IC that contains numerous regulators
-                   and often contains other subsystems.
-
-
-  o Consumer     - Electronic device that is supplied power by a regulator.
-                   Consumers can be classified into two types:-
-
-                   Static: consumer does not change its supply voltage or
-                   current limit. It only needs to enable or disable its
-                   power supply. Its supply voltage is set by the hardware,
-                   bootloader, firmware or kernel board initialisation code.
-
-                   Dynamic: consumer needs to change its supply voltage or
-                   current limit to meet operation demands.
-
-
-  o Power Domain - Electronic circuit that is supplied its input power by the
-                   output power of a regulator, switch or by another power
-                   domain.
-
-                   The supply regulator may be behind a switch(s). i.e.
-
-                   Regulator -+-> Switch-1 -+-> Switch-2 --> [Consumer A]
-                              |             |
-                              |             +-> [Consumer B], [Consumer C]
-                              |
-                              +-> [Consumer D], [Consumer E]
-
-                   That is one regulator and three power domains:
-
-                   Domain 1: Switch-1, Consumers D & E.
-                   Domain 2: Switch-2, Consumers B & C.
-                   Domain 3: Consumer A.
-
-                   and this represents a "supplies" relationship:
-
-                   Domain-1 --> Domain-2 --> Domain-3.
-
-                   A power domain may have regulators that are supplied power
-                   by other regulators. i.e.
-
-                   Regulator-1 -+-> Regulator-2 -+-> [Consumer A]
-                                |
-                                +-> [Consumer B]
-
-                   This gives us two regulators and two power domains:
-
-                   Domain 1: Regulator-2, Consumer B.
-                   Domain 2: Consumer A.
-
-                   and a "supplies" relationship:
-
-                   Domain-1 --> Domain-2
-
-
-  o Constraints  - Constraints are used to define power levels for performance
-                   and hardware protection. Constraints exist at three levels:
-
-                   Regulator Level: This is defined by the regulator hardware
-                   operating parameters and is specified in the regulator
-                   datasheet. i.e.
-
-                     - voltage output is in the range 800mV -> 3500mV.
-                     - regulator current output limit is 20mA @ 5V but is
-                       10mA @ 10V.
-
-                   Power Domain Level: This is defined in software by kernel
-                   level board initialisation code. It is used to constrain a
-                   power domain to a particular power range. i.e.
-
-                     - Domain-1 voltage is 3300mV
-                     - Domain-2 voltage is 1400mV -> 1600mV
-                     - Domain-3 current limit is 0mA -> 20mA.
-
-                   Consumer Level: This is defined by consumer drivers
-                   dynamically setting voltage or current limit levels.
-
-                   e.g. a consumer backlight driver asks for a current increase
-                   from 5mA to 10mA to increase LCD illumination. This passes
-                   to through the levels as follows :-
-
-                   Consumer: need to increase LCD brightness. Lookup and
-                   request next current mA value in brightness table (the
-                   consumer driver could be used on several different
-                   personalities based upon the same reference device).
-
-                   Power Domain: is the new current limit within the domain
-                   operating limits for this domain and system state (e.g.
-                   battery power, USB power)
-
-                   Regulator Domains: is the new current limit within the
-                   regulator operating parameters for input/output voltage.
-
-                   If the regulator request passes all the constraint tests
-                   then the new regulator value is applied.
-
-
-Design
-======
-
-The framework is designed and targeted at SoC based devices but may also be
-relevant to non SoC devices and is split into the following four interfaces:-
-
-
-   1. Consumer driver interface.
-
-      This uses a similar API to the kernel clock interface in that consumer
-      drivers can get and put a regulator (like they can with clocks atm) and
-      get/set voltage, current limit, mode, enable and disable. This should
-      allow consumers complete control over their supply voltage and current
-      limit. This also compiles out if not in use so drivers can be reused in
-      systems with no regulator based power control.
-
-        See Documentation/power/regulator/consumer.txt
-
-   2. Regulator driver interface.
-
-      This allows regulator drivers to register their regulators and provide
-      operations to the core. It also has a notifier call chain for propagating
-      regulator events to clients.
-
-        See Documentation/power/regulator/regulator.txt
-
-   3. Machine interface.
-
-      This interface is for machine specific code and allows the creation of
-      voltage/current domains (with constraints) for each regulator. It can
-      provide regulator constraints that will prevent device damage through
-      overvoltage or overcurrent caused by buggy client drivers. It also
-      allows the creation of a regulator tree whereby some regulators are
-      supplied by others (similar to a clock tree).
-
-        See Documentation/power/regulator/machine.txt
-
-   4. Userspace ABI.
-
-      The framework also exports a lot of useful voltage/current/opmode data to
-      userspace via sysfs. This could be used to help monitor device power
-      consumption and status.
-
-        See Documentation/ABI/testing/sysfs-class-regulator
diff --git a/Documentation/power/regulator/regulator.rst b/Documentation/power/regulator/regulator.rst
new file mode 100644 (file)
index 0000000..794b325
--- /dev/null
@@ -0,0 +1,32 @@
+==========================
+Regulator Driver Interface
+==========================
+
+The regulator driver interface is relatively simple and designed to allow
+regulator drivers to register their services with the core framework.
+
+
+Registration
+============
+
+Drivers can register a regulator by calling::
+
+  struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
+                                          const struct regulator_config *config);
+
+This will register the regulator's capabilities and operations to the regulator
+core.
+
+Regulators can be unregistered by calling::
+
+  void regulator_unregister(struct regulator_dev *rdev);
+
+
+Regulator Events
+================
+
+Regulators can send events (e.g. overtemperature, undervoltage, etc) to
+consumer drivers by calling::
+
+  int regulator_notifier_call_chain(struct regulator_dev *rdev,
+                                   unsigned long event, void *data);
diff --git a/Documentation/power/regulator/regulator.txt b/Documentation/power/regulator/regulator.txt
deleted file mode 100644 (file)
index b17e583..0000000
+++ /dev/null
@@ -1,30 +0,0 @@
-Regulator Driver Interface
-==========================
-
-The regulator driver interface is relatively simple and designed to allow
-regulator drivers to register their services with the core framework.
-
-
-Registration
-============
-
-Drivers can register a regulator by calling :-
-
-struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
-                                        const struct regulator_config *config);
-
-This will register the regulator's capabilities and operations to the regulator
-core.
-
-Regulators can be unregistered by calling :-
-
-void regulator_unregister(struct regulator_dev *rdev);
-
-
-Regulator Events
-================
-Regulators can send events (e.g. overtemperature, undervoltage, etc) to
-consumer drivers by calling :-
-
-int regulator_notifier_call_chain(struct regulator_dev *rdev,
-                                 unsigned long event, void *data);
diff --git a/Documentation/power/runtime_pm.rst b/Documentation/power/runtime_pm.rst
new file mode 100644 (file)
index 0000000..2c2ec99
--- /dev/null
@@ -0,0 +1,940 @@
+==================================================
+Runtime Power Management Framework for I/O Devices
+==================================================
+
+(C) 2009-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
+
+(C) 2010 Alan Stern <stern@rowland.harvard.edu>
+
+(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+
+1. Introduction
+===============
+
+Support for runtime power management (runtime PM) of I/O devices is provided
+at the power management core (PM core) level by means of:
+
+* The power management workqueue pm_wq in which bus types and device drivers can
+  put their PM-related work items.  It is strongly recommended that pm_wq be
+  used for queuing all work items related to runtime PM, because this allows
+  them to be synchronized with system-wide power transitions (suspend to RAM,
+  hibernation and resume from system sleep states).  pm_wq is declared in
+  include/linux/pm_runtime.h and defined in kernel/power/main.c.
+
+* A number of runtime PM fields in the 'power' member of 'struct device' (which
+  is of the type 'struct dev_pm_info', defined in include/linux/pm.h) that can
+  be used for synchronizing runtime PM operations with one another.
+
+* Three device runtime PM callbacks in 'struct dev_pm_ops' (defined in
+  include/linux/pm.h).
+
+* A set of helper functions defined in drivers/base/power/runtime.c that can be
+  used for carrying out runtime PM operations in such a way that the
+  synchronization between them is taken care of by the PM core.  Bus types and
+  device drivers are encouraged to use these functions.
+
+The runtime PM callbacks present in 'struct dev_pm_ops', the device runtime PM
+fields of 'struct dev_pm_info' and the core helper functions provided for
+runtime PM are described below.
+
+2. Device Runtime PM Callbacks
+==============================
+
+There are three device runtime PM callbacks defined in 'struct dev_pm_ops'::
+
+  struct dev_pm_ops {
+       ...
+       int (*runtime_suspend)(struct device *dev);
+       int (*runtime_resume)(struct device *dev);
+       int (*runtime_idle)(struct device *dev);
+       ...
+  };
+
+The ->runtime_suspend(), ->runtime_resume() and ->runtime_idle() callbacks
+are executed by the PM core for the device's subsystem that may be either of
+the following:
+
+  1. PM domain of the device, if the device's PM domain object, dev->pm_domain,
+     is present.
+
+  2. Device type of the device, if both dev->type and dev->type->pm are present.
+
+  3. Device class of the device, if both dev->class and dev->class->pm are
+     present.
+
+  4. Bus type of the device, if both dev->bus and dev->bus->pm are present.
+
+If the subsystem chosen by applying the above rules doesn't provide the relevant
+callback, the PM core will invoke the corresponding driver callback stored in
+dev->driver->pm directly (if present).
+
+The PM core always checks which callback to use in the order given above, so the
+priority order of callbacks from high to low is: PM domain, device type, class
+and bus type.  Moreover, the high-priority one will always take precedence over
+a low-priority one.  The PM domain, bus type, device type and class callbacks
+are referred to as subsystem-level callbacks in what follows.
+
+By default, the callbacks are always invoked in process context with interrupts
+enabled.  However, the pm_runtime_irq_safe() helper function can be used to tell
+the PM core that it is safe to run the ->runtime_suspend(), ->runtime_resume()
+and ->runtime_idle() callbacks for the given device in atomic context with
+interrupts disabled.  This implies that the callback routines in question must
+not block or sleep, but it also means that the synchronous helper functions
+listed at the end of Section 4 may be used for that device within an interrupt
+handler or generally in an atomic context.
+
+The subsystem-level suspend callback, if present, is _entirely_ _responsible_
+for handling the suspend of the device as appropriate, which may, but need not
+include executing the device driver's own ->runtime_suspend() callback (from the
+PM core's point of view it is not necessary to implement a ->runtime_suspend()
+callback in a device driver as long as the subsystem-level suspend callback
+knows what to do to handle the device).
+
+  * Once the subsystem-level suspend callback (or the driver suspend callback,
+    if invoked directly) has completed successfully for the given device, the PM
+    core regards the device as suspended, which need not mean that it has been
+    put into a low power state.  It is supposed to mean, however, that the
+    device will not process data and will not communicate with the CPU(s) and
+    RAM until the appropriate resume callback is executed for it.  The runtime
+    PM status of a device after successful execution of the suspend callback is
+    'suspended'.
+
+  * If the suspend callback returns -EBUSY or -EAGAIN, the device's runtime PM
+    status remains 'active', which means that the device _must_ be fully
+    operational afterwards.
+
+  * If the suspend callback returns an error code different from -EBUSY and
+    -EAGAIN, the PM core regards this as a fatal error and will refuse to run
+    the helper functions described in Section 4 for the device until its status
+    is directly set to  either 'active', or 'suspended' (the PM core provides
+    special helper functions for this purpose).
+
+In particular, if the driver requires remote wakeup capability (i.e. hardware
+mechanism allowing the device to request a change of its power state, such as
+PCI PME) for proper functioning and device_can_wakeup() returns 'false' for the
+device, then ->runtime_suspend() should return -EBUSY.  On the other hand, if
+device_can_wakeup() returns 'true' for the device and the device is put into a
+low-power state during the execution of the suspend callback, it is expected
+that remote wakeup will be enabled for the device.  Generally, remote wakeup
+should be enabled for all input devices put into low-power states at run time.
+
+The subsystem-level resume callback, if present, is **entirely responsible** for
+handling the resume of the device as appropriate, which may, but need not
+include executing the device driver's own ->runtime_resume() callback (from the
+PM core's point of view it is not necessary to implement a ->runtime_resume()
+callback in a device driver as long as the subsystem-level resume callback knows
+what to do to handle the device).
+
+  * Once the subsystem-level resume callback (or the driver resume callback, if
+    invoked directly) has completed successfully, the PM core regards the device
+    as fully operational, which means that the device _must_ be able to complete
+    I/O operations as needed.  The runtime PM status of the device is then
+    'active'.
+
+  * If the resume callback returns an error code, the PM core regards this as a
+    fatal error and will refuse to run the helper functions described in Section
+    4 for the device, until its status is directly set to either 'active', or
+    'suspended' (by means of special helper functions provided by the PM core
+    for this purpose).
+
+The idle callback (a subsystem-level one, if present, or the driver one) is
+executed by the PM core whenever the device appears to be idle, which is
+indicated to the PM core by two counters, the device's usage counter and the
+counter of 'active' children of the device.
+
+  * If any of these counters is decreased using a helper function provided by
+    the PM core and it turns out to be equal to zero, the other counter is
+    checked.  If that counter also is equal to zero, the PM core executes the
+    idle callback with the device as its argument.
+
+The action performed by the idle callback is totally dependent on the subsystem
+(or driver) in question, but the expected and recommended action is to check
+if the device can be suspended (i.e. if all of the conditions necessary for
+suspending the device are satisfied) and to queue up a suspend request for the
+device in that case.  If there is no idle callback, or if the callback returns
+0, then the PM core will attempt to carry out a runtime suspend of the device,
+also respecting devices configured for autosuspend.  In essence this means a
+call to pm_runtime_autosuspend() (do note that drivers needs to update the
+device last busy mark, pm_runtime_mark_last_busy(), to control the delay under
+this circumstance).  To prevent this (for example, if the callback routine has
+started a delayed suspend), the routine must return a non-zero value.  Negative
+error return codes are ignored by the PM core.
+
+The helper functions provided by the PM core, described in Section 4, guarantee
+that the following constraints are met with respect to runtime PM callbacks for
+one device:
+
+(1) The callbacks are mutually exclusive (e.g. it is forbidden to execute
+    ->runtime_suspend() in parallel with ->runtime_resume() or with another
+    instance of ->runtime_suspend() for the same device) with the exception that
+    ->runtime_suspend() or ->runtime_resume() can be executed in parallel with
+    ->runtime_idle() (although ->runtime_idle() will not be started while any
+    of the other callbacks is being executed for the same device).
+
+(2) ->runtime_idle() and ->runtime_suspend() can only be executed for 'active'
+    devices (i.e. the PM core will only execute ->runtime_idle() or
+    ->runtime_suspend() for the devices the runtime PM status of which is
+    'active').
+
+(3) ->runtime_idle() and ->runtime_suspend() can only be executed for a device
+    the usage counter of which is equal to zero _and_ either the counter of
+    'active' children of which is equal to zero, or the 'power.ignore_children'
+    flag of which is set.
+
+(4) ->runtime_resume() can only be executed for 'suspended' devices  (i.e. the
+    PM core will only execute ->runtime_resume() for the devices the runtime
+    PM status of which is 'suspended').
+
+Additionally, the helper functions provided by the PM core obey the following
+rules:
+
+  * If ->runtime_suspend() is about to be executed or there's a pending request
+    to execute it, ->runtime_idle() will not be executed for the same device.
+
+  * A request to execute or to schedule the execution of ->runtime_suspend()
+    will cancel any pending requests to execute ->runtime_idle() for the same
+    device.
+
+  * If ->runtime_resume() is about to be executed or there's a pending request
+    to execute it, the other callbacks will not be executed for the same device.
+
+  * A request to execute ->runtime_resume() will cancel any pending or
+    scheduled requests to execute the other callbacks for the same device,
+    except for scheduled autosuspends.
+
+3. Runtime PM Device Fields
+===========================
+
+The following device runtime PM fields are present in 'struct dev_pm_info', as
+defined in include/linux/pm.h:
+
+  `struct timer_list suspend_timer;`
+    - timer used for scheduling (delayed) suspend and autosuspend requests
+
+  `unsigned long timer_expires;`
+    - timer expiration time, in jiffies (if this is different from zero, the
+      timer is running and will expire at that time, otherwise the timer is not
+      running)
+
+  `struct work_struct work;`
+    - work structure used for queuing up requests (i.e. work items in pm_wq)
+
+  `wait_queue_head_t wait_queue;`
+    - wait queue used if any of the helper functions needs to wait for another
+      one to complete
+
+  `spinlock_t lock;`
+    - lock used for synchronization
+
+  `atomic_t usage_count;`
+    - the usage counter of the device
+
+  `atomic_t child_count;`
+    - the count of 'active' children of the device
+
+  `unsigned int ignore_children;`
+    - if set, the value of child_count is ignored (but still updated)
+
+  `unsigned int disable_depth;`
+    - used for disabling the helper functions (they work normally if this is
+      equal to zero); the initial value of it is 1 (i.e. runtime PM is
+      initially disabled for all devices)
+
+  `int runtime_error;`
+    - if set, there was a fatal error (one of the callbacks returned error code
+      as described in Section 2), so the helper functions will not work until
+      this flag is cleared; this is the error code returned by the failing
+      callback
+
+  `unsigned int idle_notification;`
+    - if set, ->runtime_idle() is being executed
+
+  `unsigned int request_pending;`
+    - if set, there's a pending request (i.e. a work item queued up into pm_wq)
+
+  `enum rpm_request request;`
+    - type of request that's pending (valid if request_pending is set)
+
+  `unsigned int deferred_resume;`
+    - set if ->runtime_resume() is about to be run while ->runtime_suspend() is
+      being executed for that device and it is not practical to wait for the
+      suspend to complete; means "start a resume as soon as you've suspended"
+
+  `enum rpm_status runtime_status;`
+    - the runtime PM status of the device; this field's initial value is
+      RPM_SUSPENDED, which means that each device is initially regarded by the
+      PM core as 'suspended', regardless of its real hardware status
+
+  `unsigned int runtime_auto;`
+    - if set, indicates that the user space has allowed the device driver to
+      power manage the device at run time via the /sys/devices/.../power/control
+      `interface;` it may only be modified with the help of the pm_runtime_allow()
+      and pm_runtime_forbid() helper functions
+
+  `unsigned int no_callbacks;`
+    - indicates that the device does not use the runtime PM callbacks (see
+      Section 8); it may be modified only by the pm_runtime_no_callbacks()
+      helper function
+
+  `unsigned int irq_safe;`
+    - indicates that the ->runtime_suspend() and ->runtime_resume() callbacks
+      will be invoked with the spinlock held and interrupts disabled
+
+  `unsigned int use_autosuspend;`
+    - indicates that the device's driver supports delayed autosuspend (see
+      Section 9); it may be modified only by the
+      pm_runtime{_dont}_use_autosuspend() helper functions
+
+  `unsigned int timer_autosuspends;`
+    - indicates that the PM core should attempt to carry out an autosuspend
+      when the timer expires rather than a normal suspend
+
+  `int autosuspend_delay;`
+    - the delay time (in milliseconds) to be used for autosuspend
+
+  `unsigned long last_busy;`
+    - the time (in jiffies) when the pm_runtime_mark_last_busy() helper
+      function was last called for this device; used in calculating inactivity
+      periods for autosuspend
+
+All of the above fields are members of the 'power' member of 'struct device'.
+
+4. Runtime PM Device Helper Functions
+=====================================
+
+The following runtime PM helper functions are defined in
+drivers/base/power/runtime.c and include/linux/pm_runtime.h:
+
+  `void pm_runtime_init(struct device *dev);`
+    - initialize the device runtime PM fields in 'struct dev_pm_info'
+
+  `void pm_runtime_remove(struct device *dev);`
+    - make sure that the runtime PM of the device will be disabled after
+      removing the device from device hierarchy
+
+  `int pm_runtime_idle(struct device *dev);`
+    - execute the subsystem-level idle callback for the device; returns an
+      error code on failure, where -EINPROGRESS means that ->runtime_idle() is
+      already being executed; if there is no callback or the callback returns 0
+      then run pm_runtime_autosuspend(dev) and return its result
+
+  `int pm_runtime_suspend(struct device *dev);`
+    - execute the subsystem-level suspend callback for the device; returns 0 on
+      success, 1 if the device's runtime PM status was already 'suspended', or
+      error code on failure, where -EAGAIN or -EBUSY means it is safe to attempt
+      to suspend the device again in future and -EACCES means that
+      'power.disable_depth' is different from 0
+
+  `int pm_runtime_autosuspend(struct device *dev);`
+    - same as pm_runtime_suspend() except that the autosuspend delay is taken
+      `into account;` if pm_runtime_autosuspend_expiration() says the delay has
+      not yet expired then an autosuspend is scheduled for the appropriate time
+      and 0 is returned
+
+  `int pm_runtime_resume(struct device *dev);`
+    - execute the subsystem-level resume callback for the device; returns 0 on
+      success, 1 if the device's runtime PM status was already 'active' or
+      error code on failure, where -EAGAIN means it may be safe to attempt to
+      resume the device again in future, but 'power.runtime_error' should be
+      checked additionally, and -EACCES means that 'power.disable_depth' is
+      different from 0
+
+  `int pm_request_idle(struct device *dev);`
+    - submit a request to execute the subsystem-level idle callback for the
+      device (the request is represented by a work item in pm_wq); returns 0 on
+      success or error code if the request has not been queued up
+
+  `int pm_request_autosuspend(struct device *dev);`
+    - schedule the execution of the subsystem-level suspend callback for the
+      device when the autosuspend delay has expired; if the delay has already
+      expired then the work item is queued up immediately
+
+  `int pm_schedule_suspend(struct device *dev, unsigned int delay);`
+    - schedule the execution of the subsystem-level suspend callback for the
+      device in future, where 'delay' is the time to wait before queuing up a
+      suspend work item in pm_wq, in milliseconds (if 'delay' is zero, the work
+      item is queued up immediately); returns 0 on success, 1 if the device's PM
+      runtime status was already 'suspended', or error code if the request
+      hasn't been scheduled (or queued up if 'delay' is 0); if the execution of
+      ->runtime_suspend() is already scheduled and not yet expired, the new
+      value of 'delay' will be used as the time to wait
+
+  `int pm_request_resume(struct device *dev);`
+    - submit a request to execute the subsystem-level resume callback for the
+      device (the request is represented by a work item in pm_wq); returns 0 on
+      success, 1 if the device's runtime PM status was already 'active', or
+      error code if the request hasn't been queued up
+
+  `void pm_runtime_get_noresume(struct device *dev);`
+    - increment the device's usage counter
+
+  `int pm_runtime_get(struct device *dev);`
+    - increment the device's usage counter, run pm_request_resume(dev) and
+      return its result
+
+  `int pm_runtime_get_sync(struct device *dev);`
+    - increment the device's usage counter, run pm_runtime_resume(dev) and
+      return its result
+
+  `int pm_runtime_get_if_in_use(struct device *dev);`
+    - return -EINVAL if 'power.disable_depth' is nonzero; otherwise, if the
+      runtime PM status is RPM_ACTIVE and the runtime PM usage counter is
+      nonzero, increment the counter and return 1; otherwise return 0 without
+      changing the counter
+
+  `void pm_runtime_put_noidle(struct device *dev);`
+    - decrement the device's usage counter
+
+  `int pm_runtime_put(struct device *dev);`
+    - decrement the device's usage counter; if the result is 0 then run
+      pm_request_idle(dev) and return its result
+
+  `int pm_runtime_put_autosuspend(struct device *dev);`
+    - decrement the device's usage counter; if the result is 0 then run
+      pm_request_autosuspend(dev) and return its result
+
+  `int pm_runtime_put_sync(struct device *dev);`
+    - decrement the device's usage counter; if the result is 0 then run
+      pm_runtime_idle(dev) and return its result
+
+  `int pm_runtime_put_sync_suspend(struct device *dev);`
+    - decrement the device's usage counter; if the result is 0 then run
+      pm_runtime_suspend(dev) and return its result
+
+  `int pm_runtime_put_sync_autosuspend(struct device *dev);`
+    - decrement the device's usage counter; if the result is 0 then run
+      pm_runtime_autosuspend(dev) and return its result
+
+  `void pm_runtime_enable(struct device *dev);`
+    - decrement the device's 'power.disable_depth' field; if that field is equal
+      to zero, the runtime PM helper functions can execute subsystem-level
+      callbacks described in Section 2 for the device
+
+  `int pm_runtime_disable(struct device *dev);`
+    - increment the device's 'power.disable_depth' field (if the value of that
+      field was previously zero, this prevents subsystem-level runtime PM
+      callbacks from being run for the device), make sure that all of the
+      pending runtime PM operations on the device are either completed or
+      canceled; returns 1 if there was a resume request pending and it was
+      necessary to execute the subsystem-level resume callback for the device
+      to satisfy that request, otherwise 0 is returned
+
+  `int pm_runtime_barrier(struct device *dev);`
+    - check if there's a resume request pending for the device and resume it
+      (synchronously) in that case, cancel any other pending runtime PM requests
+      regarding it and wait for all runtime PM operations on it in progress to
+      complete; returns 1 if there was a resume request pending and it was
+      necessary to execute the subsystem-level resume callback for the device to
+      satisfy that request, otherwise 0 is returned
+
+  `void pm_suspend_ignore_children(struct device *dev, bool enable);`
+    - set/unset the power.ignore_children flag of the device
+
+  `int pm_runtime_set_active(struct device *dev);`
+    - clear the device's 'power.runtime_error' flag, set the device's runtime
+      PM status to 'active' and update its parent's counter of 'active'
+      children as appropriate (it is only valid to use this function if
+      'power.runtime_error' is set or 'power.disable_depth' is greater than
+      zero); it will fail and return error code if the device has a parent
+      which is not active and the 'power.ignore_children' flag of which is unset
+
+  `void pm_runtime_set_suspended(struct device *dev);`
+    - clear the device's 'power.runtime_error' flag, set the device's runtime
+      PM status to 'suspended' and update its parent's counter of 'active'
+      children as appropriate (it is only valid to use this function if
+      'power.runtime_error' is set or 'power.disable_depth' is greater than
+      zero)
+
+  `bool pm_runtime_active(struct device *dev);`
+    - return true if the device's runtime PM status is 'active' or its
+      'power.disable_depth' field is not equal to zero, or false otherwise
+
+  `bool pm_runtime_suspended(struct device *dev);`
+    - return true if the device's runtime PM status is 'suspended' and its
+      'power.disable_depth' field is equal to zero, or false otherwise
+
+  `bool pm_runtime_status_suspended(struct device *dev);`
+    - return true if the device's runtime PM status is 'suspended'
+
+  `void pm_runtime_allow(struct device *dev);`
+    - set the power.runtime_auto flag for the device and decrease its usage
+      counter (used by the /sys/devices/.../power/control interface to
+      effectively allow the device to be power managed at run time)
+
+  `void pm_runtime_forbid(struct device *dev);`
+    - unset the power.runtime_auto flag for the device and increase its usage
+      counter (used by the /sys/devices/.../power/control interface to
+      effectively prevent the device from being power managed at run time)
+
+  `void pm_runtime_no_callbacks(struct device *dev);`
+    - set the power.no_callbacks flag for the device and remove the runtime
+      PM attributes from /sys/devices/.../power (or prevent them from being
+      added when the device is registered)
+
+  `void pm_runtime_irq_safe(struct device *dev);`
+    - set the power.irq_safe flag for the device, causing the runtime-PM
+      callbacks to be invoked with interrupts off
+
+  `bool pm_runtime_is_irq_safe(struct device *dev);`
+    - return true if power.irq_safe flag was set for the device, causing
+      the runtime-PM callbacks to be invoked with interrupts off
+
+  `void pm_runtime_mark_last_busy(struct device *dev);`
+    - set the power.last_busy field to the current time
+
+  `void pm_runtime_use_autosuspend(struct device *dev);`
+    - set the power.use_autosuspend flag, enabling autosuspend delays; call
+      pm_runtime_get_sync if the flag was previously cleared and
+      power.autosuspend_delay is negative
+
+  `void pm_runtime_dont_use_autosuspend(struct device *dev);`
+    - clear the power.use_autosuspend flag, disabling autosuspend delays;
+      decrement the device's usage counter if the flag was previously set and
+      power.autosuspend_delay is negative; call pm_runtime_idle
+
+  `void pm_runtime_set_autosuspend_delay(struct device *dev, int delay);`
+    - set the power.autosuspend_delay value to 'delay' (expressed in
+      milliseconds); if 'delay' is negative then runtime suspends are
+      prevented; if power.use_autosuspend is set, pm_runtime_get_sync may be
+      called or the device's usage counter may be decremented and
+      pm_runtime_idle called depending on if power.autosuspend_delay is
+      changed to or from a negative value; if power.use_autosuspend is clear,
+      pm_runtime_idle is called
+
+  `unsigned long pm_runtime_autosuspend_expiration(struct device *dev);`
+    - calculate the time when the current autosuspend delay period will expire,
+      based on power.last_busy and power.autosuspend_delay; if the delay time
+      is 1000 ms or larger then the expiration time is rounded up to the
+      nearest second; returns 0 if the delay period has already expired or
+      power.use_autosuspend isn't set, otherwise returns the expiration time
+      in jiffies
+
+It is safe to execute the following helper functions from interrupt context:
+
+- pm_request_idle()
+- pm_request_autosuspend()
+- pm_schedule_suspend()
+- pm_request_resume()
+- pm_runtime_get_noresume()
+- pm_runtime_get()
+- pm_runtime_put_noidle()
+- pm_runtime_put()
+- pm_runtime_put_autosuspend()
+- pm_runtime_enable()
+- pm_suspend_ignore_children()
+- pm_runtime_set_active()
+- pm_runtime_set_suspended()
+- pm_runtime_suspended()
+- pm_runtime_mark_last_busy()
+- pm_runtime_autosuspend_expiration()
+
+If pm_runtime_irq_safe() has been called for a device then the following helper
+functions may also be used in interrupt context:
+
+- pm_runtime_idle()
+- pm_runtime_suspend()
+- pm_runtime_autosuspend()
+- pm_runtime_resume()
+- pm_runtime_get_sync()
+- pm_runtime_put_sync()
+- pm_runtime_put_sync_suspend()
+- pm_runtime_put_sync_autosuspend()
+
+5. Runtime PM Initialization, Device Probing and Removal
+========================================================
+
+Initially, the runtime PM is disabled for all devices, which means that the
+majority of the runtime PM helper functions described in Section 4 will return
+-EAGAIN until pm_runtime_enable() is called for the device.
+
+In addition to that, the initial runtime PM status of all devices is
+'suspended', but it need not reflect the actual physical state of the device.
+Thus, if the device is initially active (i.e. it is able to process I/O), its
+runtime PM status must be changed to 'active', with the help of
+pm_runtime_set_active(), before pm_runtime_enable() is called for the device.
+
+However, if the device has a parent and the parent's runtime PM is enabled,
+calling pm_runtime_set_active() for the device will affect the parent, unless
+the parent's 'power.ignore_children' flag is set.  Namely, in that case the
+parent won't be able to suspend at run time, using the PM core's helper
+functions, as long as the child's status is 'active', even if the child's
+runtime PM is still disabled (i.e. pm_runtime_enable() hasn't been called for
+the child yet or pm_runtime_disable() has been called for it).  For this reason,
+once pm_runtime_set_active() has been called for the device, pm_runtime_enable()
+should be called for it too as soon as reasonably possible or its runtime PM
+status should be changed back to 'suspended' with the help of
+pm_runtime_set_suspended().
+
+If the default initial runtime PM status of the device (i.e. 'suspended')
+reflects the actual state of the device, its bus type's or its driver's
+->probe() callback will likely need to wake it up using one of the PM core's
+helper functions described in Section 4.  In that case, pm_runtime_resume()
+should be used.  Of course, for this purpose the device's runtime PM has to be
+enabled earlier by calling pm_runtime_enable().
+
+Note, if the device may execute pm_runtime calls during the probe (such as
+if it is registers with a subsystem that may call back in) then the
+pm_runtime_get_sync() call paired with a pm_runtime_put() call will be
+appropriate to ensure that the device is not put back to sleep during the
+probe. This can happen with systems such as the network device layer.
+
+It may be desirable to suspend the device once ->probe() has finished.
+Therefore the driver core uses the asynchronous pm_request_idle() to submit a
+request to execute the subsystem-level idle callback for the device at that
+time.  A driver that makes use of the runtime autosuspend feature, may want to
+update the last busy mark before returning from ->probe().
+
+Moreover, the driver core prevents runtime PM callbacks from racing with the bus
+notifier callback in __device_release_driver(), which is necessary, because the
+notifier is used by some subsystems to carry out operations affecting the
+runtime PM functionality.  It does so by calling pm_runtime_get_sync() before
+driver_sysfs_remove() and the BUS_NOTIFY_UNBIND_DRIVER notifications.  This
+resumes the device if it's in the suspended state and prevents it from
+being suspended again while those routines are being executed.
+
+To allow bus types and drivers to put devices into the suspended state by
+calling pm_runtime_suspend() from their ->remove() routines, the driver core
+executes pm_runtime_put_sync() after running the BUS_NOTIFY_UNBIND_DRIVER
+notifications in __device_release_driver().  This requires bus types and
+drivers to make their ->remove() callbacks avoid races with runtime PM directly,
+but also it allows of more flexibility in the handling of devices during the
+removal of their drivers.
+
+Drivers in ->remove() callback should undo the runtime PM changes done
+in ->probe(). Usually this means calling pm_runtime_disable(),
+pm_runtime_dont_use_autosuspend() etc.
+
+The user space can effectively disallow the driver of the device to power manage
+it at run time by changing the value of its /sys/devices/.../power/control
+attribute to "on", which causes pm_runtime_forbid() to be called.  In principle,
+this mechanism may also be used by the driver to effectively turn off the
+runtime power management of the device until the user space turns it on.
+Namely, during the initialization the driver can make sure that the runtime PM
+status of the device is 'active' and call pm_runtime_forbid().  It should be
+noted, however, that if the user space has already intentionally changed the
+value of /sys/devices/.../power/control to "auto" to allow the driver to power
+manage the device at run time, the driver may confuse it by using
+pm_runtime_forbid() this way.
+
+6. Runtime PM and System Sleep
+==============================
+
+Runtime PM and system sleep (i.e., system suspend and hibernation, also known
+as suspend-to-RAM and suspend-to-disk) interact with each other in a couple of
+ways.  If a device is active when a system sleep starts, everything is
+straightforward.  But what should happen if the device is already suspended?
+
+The device may have different wake-up settings for runtime PM and system sleep.
+For example, remote wake-up may be enabled for runtime suspend but disallowed
+for system sleep (device_may_wakeup(dev) returns 'false').  When this happens,
+the subsystem-level system suspend callback is responsible for changing the
+device's wake-up setting (it may leave that to the device driver's system
+suspend routine).  It may be necessary to resume the device and suspend it again
+in order to do so.  The same is true if the driver uses different power levels
+or other settings for runtime suspend and system sleep.
+
+During system resume, the simplest approach is to bring all devices back to full
+power, even if they had been suspended before the system suspend began.  There
+are several reasons for this, including:
+
+  * The device might need to switch power levels, wake-up settings, etc.
+
+  * Remote wake-up events might have been lost by the firmware.
+
+  * The device's children may need the device to be at full power in order
+    to resume themselves.
+
+  * The driver's idea of the device state may not agree with the device's
+    physical state.  This can happen during resume from hibernation.
+
+  * The device might need to be reset.
+
+  * Even though the device was suspended, if its usage counter was > 0 then most
+    likely it would need a runtime resume in the near future anyway.
+
+If the device had been suspended before the system suspend began and it's
+brought back to full power during resume, then its runtime PM status will have
+to be updated to reflect the actual post-system sleep status.  The way to do
+this is:
+
+        - pm_runtime_disable(dev);
+        - pm_runtime_set_active(dev);
+        - pm_runtime_enable(dev);
+
+The PM core always increments the runtime usage counter before calling the
+->suspend() callback and decrements it after calling the ->resume() callback.
+Hence disabling runtime PM temporarily like this will not cause any runtime
+suspend attempts to be permanently lost.  If the usage count goes to zero
+following the return of the ->resume() callback, the ->runtime_idle() callback
+will be invoked as usual.
+
+On some systems, however, system sleep is not entered through a global firmware
+or hardware operation.  Instead, all hardware components are put into low-power
+states directly by the kernel in a coordinated way.  Then, the system sleep
+state effectively follows from the states the hardware components end up in
+and the system is woken up from that state by a hardware interrupt or a similar
+mechanism entirely under the kernel's control.  As a result, the kernel never
+gives control away and the states of all devices during resume are precisely
+known to it.  If that is the case and none of the situations listed above takes
+place (in particular, if the system is not waking up from hibernation), it may
+be more efficient to leave the devices that had been suspended before the system
+suspend began in the suspended state.
+
+To this end, the PM core provides a mechanism allowing some coordination between
+different levels of device hierarchy.  Namely, if a system suspend .prepare()
+callback returns a positive number for a device, that indicates to the PM core
+that the device appears to be runtime-suspended and its state is fine, so it
+may be left in runtime suspend provided that all of its descendants are also
+left in runtime suspend.  If that happens, the PM core will not execute any
+system suspend and resume callbacks for all of those devices, except for the
+complete callback, which is then entirely responsible for handling the device
+as appropriate.  This only applies to system suspend transitions that are not
+related to hibernation (see Documentation/driver-api/pm/devices.rst for more
+information).
+
+The PM core does its best to reduce the probability of race conditions between
+the runtime PM and system suspend/resume (and hibernation) callbacks by carrying
+out the following operations:
+
+  * During system suspend pm_runtime_get_noresume() is called for every device
+    right before executing the subsystem-level .prepare() callback for it and
+    pm_runtime_barrier() is called for every device right before executing the
+    subsystem-level .suspend() callback for it.  In addition to that the PM core
+    calls  __pm_runtime_disable() with 'false' as the second argument for every
+    device right before executing the subsystem-level .suspend_late() callback
+    for it.
+
+  * During system resume pm_runtime_enable() and pm_runtime_put() are called for
+    every device right after executing the subsystem-level .resume_early()
+    callback and right after executing the subsystem-level .complete() callback
+    for it, respectively.
+
+7. Generic subsystem callbacks
+
+Subsystems may wish to conserve code space by using the set of generic power
+management callbacks provided by the PM core, defined in
+driver/base/power/generic_ops.c:
+
+  `int pm_generic_runtime_suspend(struct device *dev);`
+    - invoke the ->runtime_suspend() callback provided by the driver of this
+      device and return its result, or return 0 if not defined
+
+  `int pm_generic_runtime_resume(struct device *dev);`
+    - invoke the ->runtime_resume() callback provided by the driver of this
+      device and return its result, or return 0 if not defined
+
+  `int pm_generic_suspend(struct device *dev);`
+    - if the device has not been suspended at run time, invoke the ->suspend()
+      callback provided by its driver and return its result, or return 0 if not
+      defined
+
+  `int pm_generic_suspend_noirq(struct device *dev);`
+    - if pm_runtime_suspended(dev) returns "false", invoke the ->suspend_noirq()
+      callback provided by the device's driver and return its result, or return
+      0 if not defined
+
+  `int pm_generic_resume(struct device *dev);`
+    - invoke the ->resume() callback provided by the driver of this device and,
+      if successful, change the device's runtime PM status to 'active'
+
+  `int pm_generic_resume_noirq(struct device *dev);`
+    - invoke the ->resume_noirq() callback provided by the driver of this device
+
+  `int pm_generic_freeze(struct device *dev);`
+    - if the device has not been suspended at run time, invoke the ->freeze()
+      callback provided by its driver and return its result, or return 0 if not
+      defined
+
+  `int pm_generic_freeze_noirq(struct device *dev);`
+    - if pm_runtime_suspended(dev) returns "false", invoke the ->freeze_noirq()
+      callback provided by the device's driver and return its result, or return
+      0 if not defined
+
+  `int pm_generic_thaw(struct device *dev);`
+    - if the device has not been suspended at run time, invoke the ->thaw()
+      callback provided by its driver and return its result, or return 0 if not
+      defined
+
+  `int pm_generic_thaw_noirq(struct device *dev);`
+    - if pm_runtime_suspended(dev) returns "false", invoke the ->thaw_noirq()
+      callback provided by the device's driver and return its result, or return
+      0 if not defined
+
+  `int pm_generic_poweroff(struct device *dev);`
+    - if the device has not been suspended at run time, invoke the ->poweroff()
+      callback provided by its driver and return its result, or return 0 if not
+      defined
+
+  `int pm_generic_poweroff_noirq(struct device *dev);`
+    - if pm_runtime_suspended(dev) returns "false", run the ->poweroff_noirq()
+      callback provided by the device's driver and return its result, or return
+      0 if not defined
+
+  `int pm_generic_restore(struct device *dev);`
+    - invoke the ->restore() callback provided by the driver of this device and,
+      if successful, change the device's runtime PM status to 'active'
+
+  `int pm_generic_restore_noirq(struct device *dev);`
+    - invoke the ->restore_noirq() callback provided by the device's driver
+
+These functions are the defaults used by the PM core, if a subsystem doesn't
+provide its own callbacks for ->runtime_idle(), ->runtime_suspend(),
+->runtime_resume(), ->suspend(), ->suspend_noirq(), ->resume(),
+->resume_noirq(), ->freeze(), ->freeze_noirq(), ->thaw(), ->thaw_noirq(),
+->poweroff(), ->poweroff_noirq(), ->restore(), ->restore_noirq() in the
+subsystem-level dev_pm_ops structure.
+
+Device drivers that wish to use the same function as a system suspend, freeze,
+poweroff and runtime suspend callback, and similarly for system resume, thaw,
+restore, and runtime resume, can achieve this with the help of the
+UNIVERSAL_DEV_PM_OPS macro defined in include/linux/pm.h (possibly setting its
+last argument to NULL).
+
+8. "No-Callback" Devices
+========================
+
+Some "devices" are only logical sub-devices of their parent and cannot be
+power-managed on their own.  (The prototype example is a USB interface.  Entire
+USB devices can go into low-power mode or send wake-up requests, but neither is
+possible for individual interfaces.)  The drivers for these devices have no
+need of runtime PM callbacks; if the callbacks did exist, ->runtime_suspend()
+and ->runtime_resume() would always return 0 without doing anything else and
+->runtime_idle() would always call pm_runtime_suspend().
+
+Subsystems can tell the PM core about these devices by calling
+pm_runtime_no_callbacks().  This should be done after the device structure is
+initialized and before it is registered (although after device registration is
+also okay).  The routine will set the device's power.no_callbacks flag and
+prevent the non-debugging runtime PM sysfs attributes from being created.
+
+When power.no_callbacks is set, the PM core will not invoke the
+->runtime_idle(), ->runtime_suspend(), or ->runtime_resume() callbacks.
+Instead it will assume that suspends and resumes always succeed and that idle
+devices should be suspended.
+
+As a consequence, the PM core will never directly inform the device's subsystem
+or driver about runtime power changes.  Instead, the driver for the device's
+parent must take responsibility for telling the device's driver when the
+parent's power state changes.
+
+9. Autosuspend, or automatically-delayed suspends
+=================================================
+
+Changing a device's power state isn't free; it requires both time and energy.
+A device should be put in a low-power state only when there's some reason to
+think it will remain in that state for a substantial time.  A common heuristic
+says that a device which hasn't been used for a while is liable to remain
+unused; following this advice, drivers should not allow devices to be suspended
+at runtime until they have been inactive for some minimum period.  Even when
+the heuristic ends up being non-optimal, it will still prevent devices from
+"bouncing" too rapidly between low-power and full-power states.
+
+The term "autosuspend" is an historical remnant.  It doesn't mean that the
+device is automatically suspended (the subsystem or driver still has to call
+the appropriate PM routines); rather it means that runtime suspends will
+automatically be delayed until the desired period of inactivity has elapsed.
+
+Inactivity is determined based on the power.last_busy field.  Drivers should
+call pm_runtime_mark_last_busy() to update this field after carrying out I/O,
+typically just before calling pm_runtime_put_autosuspend().  The desired length
+of the inactivity period is a matter of policy.  Subsystems can set this length
+initially by calling pm_runtime_set_autosuspend_delay(), but after device
+registration the length should be controlled by user space, using the
+/sys/devices/.../power/autosuspend_delay_ms attribute.
+
+In order to use autosuspend, subsystems or drivers must call
+pm_runtime_use_autosuspend() (preferably before registering the device), and
+thereafter they should use the various `*_autosuspend()` helper functions
+instead of the non-autosuspend counterparts::
+
+       Instead of: pm_runtime_suspend    use: pm_runtime_autosuspend;
+       Instead of: pm_schedule_suspend   use: pm_request_autosuspend;
+       Instead of: pm_runtime_put        use: pm_runtime_put_autosuspend;
+       Instead of: pm_runtime_put_sync   use: pm_runtime_put_sync_autosuspend.
+
+Drivers may also continue to use the non-autosuspend helper functions; they
+will behave normally, which means sometimes taking the autosuspend delay into
+account (see pm_runtime_idle).
+
+Under some circumstances a driver or subsystem may want to prevent a device
+from autosuspending immediately, even though the usage counter is zero and the
+autosuspend delay time has expired.  If the ->runtime_suspend() callback
+returns -EAGAIN or -EBUSY, and if the next autosuspend delay expiration time is
+in the future (as it normally would be if the callback invoked
+pm_runtime_mark_last_busy()), the PM core will automatically reschedule the
+autosuspend.  The ->runtime_suspend() callback can't do this rescheduling
+itself because no suspend requests of any kind are accepted while the device is
+suspending (i.e., while the callback is running).
+
+The implementation is well suited for asynchronous use in interrupt contexts.
+However such use inevitably involves races, because the PM core can't
+synchronize ->runtime_suspend() callbacks with the arrival of I/O requests.
+This synchronization must be handled by the driver, using its private lock.
+Here is a schematic pseudo-code example::
+
+       foo_read_or_write(struct foo_priv *foo, void *data)
+       {
+               lock(&foo->private_lock);
+               add_request_to_io_queue(foo, data);
+               if (foo->num_pending_requests++ == 0)
+                       pm_runtime_get(&foo->dev);
+               if (!foo->is_suspended)
+                       foo_process_next_request(foo);
+               unlock(&foo->private_lock);
+       }
+
+       foo_io_completion(struct foo_priv *foo, void *req)
+       {
+               lock(&foo->private_lock);
+               if (--foo->num_pending_requests == 0) {
+                       pm_runtime_mark_last_busy(&foo->dev);
+                       pm_runtime_put_autosuspend(&foo->dev);
+               } else {
+                       foo_process_next_request(foo);
+               }
+               unlock(&foo->private_lock);
+               /* Send req result back to the user ... */
+       }
+
+       int foo_runtime_suspend(struct device *dev)
+       {
+               struct foo_priv foo = container_of(dev, ...);
+               int ret = 0;
+
+               lock(&foo->private_lock);
+               if (foo->num_pending_requests > 0) {
+                       ret = -EBUSY;
+               } else {
+                       /* ... suspend the device ... */
+                       foo->is_suspended = 1;
+               }
+               unlock(&foo->private_lock);
+               return ret;
+       }
+
+       int foo_runtime_resume(struct device *dev)
+       {
+               struct foo_priv foo = container_of(dev, ...);
+
+               lock(&foo->private_lock);
+               /* ... resume the device ... */
+               foo->is_suspended = 0;
+               pm_runtime_mark_last_busy(&foo->dev);
+               if (foo->num_pending_requests > 0)
+                       foo_process_next_request(foo);
+               unlock(&foo->private_lock);
+               return 0;
+       }
+
+The important point is that after foo_io_completion() asks for an autosuspend,
+the foo_runtime_suspend() callback may race with foo_read_or_write().
+Therefore foo_runtime_suspend() has to check whether there are any pending I/O
+requests (while holding the private lock) before allowing the suspend to
+proceed.
+
+In addition, the power.autosuspend_delay field can be changed by user space at
+any time.  If a driver cares about this, it can call
+pm_runtime_autosuspend_expiration() from within the ->runtime_suspend()
+callback while holding its private lock.  If the function returns a nonzero
+value then the delay has not yet expired and the callback should return
+-EAGAIN.
diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt
deleted file mode 100644 (file)
index 937e33c..0000000
+++ /dev/null
@@ -1,928 +0,0 @@
-Runtime Power Management Framework for I/O Devices
-
-(C) 2009-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
-(C) 2010 Alan Stern <stern@rowland.harvard.edu>
-(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
-
-1. Introduction
-
-Support for runtime power management (runtime PM) of I/O devices is provided
-at the power management core (PM core) level by means of:
-
-* The power management workqueue pm_wq in which bus types and device drivers can
-  put their PM-related work items.  It is strongly recommended that pm_wq be
-  used for queuing all work items related to runtime PM, because this allows
-  them to be synchronized with system-wide power transitions (suspend to RAM,
-  hibernation and resume from system sleep states).  pm_wq is declared in
-  include/linux/pm_runtime.h and defined in kernel/power/main.c.
-
-* A number of runtime PM fields in the 'power' member of 'struct device' (which
-  is of the type 'struct dev_pm_info', defined in include/linux/pm.h) that can
-  be used for synchronizing runtime PM operations with one another.
-
-* Three device runtime PM callbacks in 'struct dev_pm_ops' (defined in
-  include/linux/pm.h).
-
-* A set of helper functions defined in drivers/base/power/runtime.c that can be
-  used for carrying out runtime PM operations in such a way that the
-  synchronization between them is taken care of by the PM core.  Bus types and
-  device drivers are encouraged to use these functions.
-
-The runtime PM callbacks present in 'struct dev_pm_ops', the device runtime PM
-fields of 'struct dev_pm_info' and the core helper functions provided for
-runtime PM are described below.
-
-2. Device Runtime PM Callbacks
-
-There are three device runtime PM callbacks defined in 'struct dev_pm_ops':
-
-struct dev_pm_ops {
-       ...
-       int (*runtime_suspend)(struct device *dev);
-       int (*runtime_resume)(struct device *dev);
-       int (*runtime_idle)(struct device *dev);
-       ...
-};
-
-The ->runtime_suspend(), ->runtime_resume() and ->runtime_idle() callbacks
-are executed by the PM core for the device's subsystem that may be either of
-the following:
-
-  1. PM domain of the device, if the device's PM domain object, dev->pm_domain,
-     is present.
-
-  2. Device type of the device, if both dev->type and dev->type->pm are present.
-
-  3. Device class of the device, if both dev->class and dev->class->pm are
-     present.
-
-  4. Bus type of the device, if both dev->bus and dev->bus->pm are present.
-
-If the subsystem chosen by applying the above rules doesn't provide the relevant
-callback, the PM core will invoke the corresponding driver callback stored in
-dev->driver->pm directly (if present).
-
-The PM core always checks which callback to use in the order given above, so the
-priority order of callbacks from high to low is: PM domain, device type, class
-and bus type.  Moreover, the high-priority one will always take precedence over
-a low-priority one.  The PM domain, bus type, device type and class callbacks
-are referred to as subsystem-level callbacks in what follows.
-
-By default, the callbacks are always invoked in process context with interrupts
-enabled.  However, the pm_runtime_irq_safe() helper function can be used to tell
-the PM core that it is safe to run the ->runtime_suspend(), ->runtime_resume()
-and ->runtime_idle() callbacks for the given device in atomic context with
-interrupts disabled.  This implies that the callback routines in question must
-not block or sleep, but it also means that the synchronous helper functions
-listed at the end of Section 4 may be used for that device within an interrupt
-handler or generally in an atomic context.
-
-The subsystem-level suspend callback, if present, is _entirely_ _responsible_
-for handling the suspend of the device as appropriate, which may, but need not
-include executing the device driver's own ->runtime_suspend() callback (from the
-PM core's point of view it is not necessary to implement a ->runtime_suspend()
-callback in a device driver as long as the subsystem-level suspend callback
-knows what to do to handle the device).
-
-  * Once the subsystem-level suspend callback (or the driver suspend callback,
-    if invoked directly) has completed successfully for the given device, the PM
-    core regards the device as suspended, which need not mean that it has been
-    put into a low power state.  It is supposed to mean, however, that the
-    device will not process data and will not communicate with the CPU(s) and
-    RAM until the appropriate resume callback is executed for it.  The runtime
-    PM status of a device after successful execution of the suspend callback is
-    'suspended'.
-
-  * If the suspend callback returns -EBUSY or -EAGAIN, the device's runtime PM
-    status remains 'active', which means that the device _must_ be fully
-    operational afterwards.
-
-  * If the suspend callback returns an error code different from -EBUSY and
-    -EAGAIN, the PM core regards this as a fatal error and will refuse to run
-    the helper functions described in Section 4 for the device until its status
-    is directly set to  either 'active', or 'suspended' (the PM core provides
-    special helper functions for this purpose).
-
-In particular, if the driver requires remote wakeup capability (i.e. hardware
-mechanism allowing the device to request a change of its power state, such as
-PCI PME) for proper functioning and device_can_wakeup() returns 'false' for the
-device, then ->runtime_suspend() should return -EBUSY.  On the other hand, if
-device_can_wakeup() returns 'true' for the device and the device is put into a
-low-power state during the execution of the suspend callback, it is expected
-that remote wakeup will be enabled for the device.  Generally, remote wakeup
-should be enabled for all input devices put into low-power states at run time.
-
-The subsystem-level resume callback, if present, is _entirely_ _responsible_ for
-handling the resume of the device as appropriate, which may, but need not
-include executing the device driver's own ->runtime_resume() callback (from the
-PM core's point of view it is not necessary to implement a ->runtime_resume()
-callback in a device driver as long as the subsystem-level resume callback knows
-what to do to handle the device).
-
-  * Once the subsystem-level resume callback (or the driver resume callback, if
-    invoked directly) has completed successfully, the PM core regards the device
-    as fully operational, which means that the device _must_ be able to complete
-    I/O operations as needed.  The runtime PM status of the device is then
-    'active'.
-
-  * If the resume callback returns an error code, the PM core regards this as a
-    fatal error and will refuse to run the helper functions described in Section
-    4 for the device, until its status is directly set to either 'active', or
-    'suspended' (by means of special helper functions provided by the PM core
-    for this purpose).
-
-The idle callback (a subsystem-level one, if present, or the driver one) is
-executed by the PM core whenever the device appears to be idle, which is
-indicated to the PM core by two counters, the device's usage counter and the
-counter of 'active' children of the device.
-
-  * If any of these counters is decreased using a helper function provided by
-    the PM core and it turns out to be equal to zero, the other counter is
-    checked.  If that counter also is equal to zero, the PM core executes the
-    idle callback with the device as its argument.
-
-The action performed by the idle callback is totally dependent on the subsystem
-(or driver) in question, but the expected and recommended action is to check
-if the device can be suspended (i.e. if all of the conditions necessary for
-suspending the device are satisfied) and to queue up a suspend request for the
-device in that case.  If there is no idle callback, or if the callback returns
-0, then the PM core will attempt to carry out a runtime suspend of the device,
-also respecting devices configured for autosuspend.  In essence this means a
-call to pm_runtime_autosuspend() (do note that drivers needs to update the
-device last busy mark, pm_runtime_mark_last_busy(), to control the delay under
-this circumstance).  To prevent this (for example, if the callback routine has
-started a delayed suspend), the routine must return a non-zero value.  Negative
-error return codes are ignored by the PM core.
-
-The helper functions provided by the PM core, described in Section 4, guarantee
-that the following constraints are met with respect to runtime PM callbacks for
-one device:
-
-(1) The callbacks are mutually exclusive (e.g. it is forbidden to execute
-    ->runtime_suspend() in parallel with ->runtime_resume() or with another
-    instance of ->runtime_suspend() for the same device) with the exception that
-    ->runtime_suspend() or ->runtime_resume() can be executed in parallel with
-    ->runtime_idle() (although ->runtime_idle() will not be started while any
-    of the other callbacks is being executed for the same device).
-
-(2) ->runtime_idle() and ->runtime_suspend() can only be executed for 'active'
-    devices (i.e. the PM core will only execute ->runtime_idle() or
-    ->runtime_suspend() for the devices the runtime PM status of which is
-    'active').
-
-(3) ->runtime_idle() and ->runtime_suspend() can only be executed for a device
-    the usage counter of which is equal to zero _and_ either the counter of
-    'active' children of which is equal to zero, or the 'power.ignore_children'
-    flag of which is set.
-
-(4) ->runtime_resume() can only be executed for 'suspended' devices  (i.e. the
-    PM core will only execute ->runtime_resume() for the devices the runtime
-    PM status of which is 'suspended').
-
-Additionally, the helper functions provided by the PM core obey the following
-rules:
-
-  * If ->runtime_suspend() is about to be executed or there's a pending request
-    to execute it, ->runtime_idle() will not be executed for the same device.
-
-  * A request to execute or to schedule the execution of ->runtime_suspend()
-    will cancel any pending requests to execute ->runtime_idle() for the same
-    device.
-
-  * If ->runtime_resume() is about to be executed or there's a pending request
-    to execute it, the other callbacks will not be executed for the same device.
-
-  * A request to execute ->runtime_resume() will cancel any pending or
-    scheduled requests to execute the other callbacks for the same device,
-    except for scheduled autosuspends.
-
-3. Runtime PM Device Fields
-
-The following device runtime PM fields are present in 'struct dev_pm_info', as
-defined in include/linux/pm.h:
-
-  struct timer_list suspend_timer;
-    - timer used for scheduling (delayed) suspend and autosuspend requests
-
-  unsigned long timer_expires;
-    - timer expiration time, in jiffies (if this is different from zero, the
-      timer is running and will expire at that time, otherwise the timer is not
-      running)
-
-  struct work_struct work;
-    - work structure used for queuing up requests (i.e. work items in pm_wq)
-
-  wait_queue_head_t wait_queue;
-    - wait queue used if any of the helper functions needs to wait for another
-      one to complete
-
-  spinlock_t lock;
-    - lock used for synchronization
-
-  atomic_t usage_count;
-    - the usage counter of the device
-
-  atomic_t child_count;
-    - the count of 'active' children of the device
-
-  unsigned int ignore_children;
-    - if set, the value of child_count is ignored (but still updated)
-
-  unsigned int disable_depth;
-    - used for disabling the helper functions (they work normally if this is
-      equal to zero); the initial value of it is 1 (i.e. runtime PM is
-      initially disabled for all devices)
-
-  int runtime_error;
-    - if set, there was a fatal error (one of the callbacks returned error code
-      as described in Section 2), so the helper functions will not work until
-      this flag is cleared; this is the error code returned by the failing
-      callback
-
-  unsigned int idle_notification;
-    - if set, ->runtime_idle() is being executed
-
-  unsigned int request_pending;
-    - if set, there's a pending request (i.e. a work item queued up into pm_wq)
-
-  enum rpm_request request;
-    - type of request that's pending (valid if request_pending is set)
-
-  unsigned int deferred_resume;
-    - set if ->runtime_resume() is about to be run while ->runtime_suspend() is
-      being executed for that device and it is not practical to wait for the
-      suspend to complete; means "start a resume as soon as you've suspended"
-
-  enum rpm_status runtime_status;
-    - the runtime PM status of the device; this field's initial value is
-      RPM_SUSPENDED, which means that each device is initially regarded by the
-      PM core as 'suspended', regardless of its real hardware status
-
-  unsigned int runtime_auto;
-    - if set, indicates that the user space has allowed the device driver to
-      power manage the device at run time via the /sys/devices/.../power/control
-      interface; it may only be modified with the help of the pm_runtime_allow()
-      and pm_runtime_forbid() helper functions
-
-  unsigned int no_callbacks;
-    - indicates that the device does not use the runtime PM callbacks (see
-      Section 8); it may be modified only by the pm_runtime_no_callbacks()
-      helper function
-
-  unsigned int irq_safe;
-    - indicates that the ->runtime_suspend() and ->runtime_resume() callbacks
-      will be invoked with the spinlock held and interrupts disabled
-
-  unsigned int use_autosuspend;
-    - indicates that the device's driver supports delayed autosuspend (see
-      Section 9); it may be modified only by the
-      pm_runtime{_dont}_use_autosuspend() helper functions
-
-  unsigned int timer_autosuspends;
-    - indicates that the PM core should attempt to carry out an autosuspend
-      when the timer expires rather than a normal suspend
-
-  int autosuspend_delay;
-    - the delay time (in milliseconds) to be used for autosuspend
-
-  unsigned long last_busy;
-    - the time (in jiffies) when the pm_runtime_mark_last_busy() helper
-      function was last called for this device; used in calculating inactivity
-      periods for autosuspend
-
-All of the above fields are members of the 'power' member of 'struct device'.
-
-4. Runtime PM Device Helper Functions
-
-The following runtime PM helper functions are defined in
-drivers/base/power/runtime.c and include/linux/pm_runtime.h:
-
-  void pm_runtime_init(struct device *dev);
-    - initialize the device runtime PM fields in 'struct dev_pm_info'
-
-  void pm_runtime_remove(struct device *dev);
-    - make sure that the runtime PM of the device will be disabled after
-      removing the device from device hierarchy
-
-  int pm_runtime_idle(struct device *dev);
-    - execute the subsystem-level idle callback for the device; returns an
-      error code on failure, where -EINPROGRESS means that ->runtime_idle() is
-      already being executed; if there is no callback or the callback returns 0
-      then run pm_runtime_autosuspend(dev) and return its result
-
-  int pm_runtime_suspend(struct device *dev);
-    - execute the subsystem-level suspend callback for the device; returns 0 on
-      success, 1 if the device's runtime PM status was already 'suspended', or
-      error code on failure, where -EAGAIN or -EBUSY means it is safe to attempt
-      to suspend the device again in future and -EACCES means that
-      'power.disable_depth' is different from 0
-
-  int pm_runtime_autosuspend(struct device *dev);
-    - same as pm_runtime_suspend() except that the autosuspend delay is taken
-      into account; if pm_runtime_autosuspend_expiration() says the delay has
-      not yet expired then an autosuspend is scheduled for the appropriate time
-      and 0 is returned
-
-  int pm_runtime_resume(struct device *dev);
-    - execute the subsystem-level resume callback for the device; returns 0 on
-      success, 1 if the device's runtime PM status was already 'active' or
-      error code on failure, where -EAGAIN means it may be safe to attempt to
-      resume the device again in future, but 'power.runtime_error' should be
-      checked additionally, and -EACCES means that 'power.disable_depth' is
-      different from 0
-
-  int pm_request_idle(struct device *dev);
-    - submit a request to execute the subsystem-level idle callback for the
-      device (the request is represented by a work item in pm_wq); returns 0 on
-      success or error code if the request has not been queued up
-
-  int pm_request_autosuspend(struct device *dev);
-    - schedule the execution of the subsystem-level suspend callback for the
-      device when the autosuspend delay has expired; if the delay has already
-      expired then the work item is queued up immediately
-
-  int pm_schedule_suspend(struct device *dev, unsigned int delay);
-    - schedule the execution of the subsystem-level suspend callback for the
-      device in future, where 'delay' is the time to wait before queuing up a
-      suspend work item in pm_wq, in milliseconds (if 'delay' is zero, the work
-      item is queued up immediately); returns 0 on success, 1 if the device's PM
-      runtime status was already 'suspended', or error code if the request
-      hasn't been scheduled (or queued up if 'delay' is 0); if the execution of
-      ->runtime_suspend() is already scheduled and not yet expired, the new
-      value of 'delay' will be used as the time to wait
-
-  int pm_request_resume(struct device *dev);
-    - submit a request to execute the subsystem-level resume callback for the
-      device (the request is represented by a work item in pm_wq); returns 0 on
-      success, 1 if the device's runtime PM status was already 'active', or
-      error code if the request hasn't been queued up
-
-  void pm_runtime_get_noresume(struct device *dev);
-    - increment the device's usage counter
-
-  int pm_runtime_get(struct device *dev);
-    - increment the device's usage counter, run pm_request_resume(dev) and
-      return its result
-
-  int pm_runtime_get_sync(struct device *dev);
-    - increment the device's usage counter, run pm_runtime_resume(dev) and
-      return its result
-
-  int pm_runtime_get_if_in_use(struct device *dev);
-    - return -EINVAL if 'power.disable_depth' is nonzero; otherwise, if the
-      runtime PM status is RPM_ACTIVE and the runtime PM usage counter is
-      nonzero, increment the counter and return 1; otherwise return 0 without
-      changing the counter
-
-  void pm_runtime_put_noidle(struct device *dev);
-    - decrement the device's usage counter
-
-  int pm_runtime_put(struct device *dev);
-    - decrement the device's usage counter; if the result is 0 then run
-      pm_request_idle(dev) and return its result
-
-  int pm_runtime_put_autosuspend(struct device *dev);
-    - decrement the device's usage counter; if the result is 0 then run
-      pm_request_autosuspend(dev) and return its result
-
-  int pm_runtime_put_sync(struct device *dev);
-    - decrement the device's usage counter; if the result is 0 then run
-      pm_runtime_idle(dev) and return its result
-
-  int pm_runtime_put_sync_suspend(struct device *dev);
-    - decrement the device's usage counter; if the result is 0 then run
-      pm_runtime_suspend(dev) and return its result
-
-  int pm_runtime_put_sync_autosuspend(struct device *dev);
-    - decrement the device's usage counter; if the result is 0 then run
-      pm_runtime_autosuspend(dev) and return its result
-
-  void pm_runtime_enable(struct device *dev);
-    - decrement the device's 'power.disable_depth' field; if that field is equal
-      to zero, the runtime PM helper functions can execute subsystem-level
-      callbacks described in Section 2 for the device
-
-  int pm_runtime_disable(struct device *dev);
-    - increment the device's 'power.disable_depth' field (if the value of that
-      field was previously zero, this prevents subsystem-level runtime PM
-      callbacks from being run for the device), make sure that all of the
-      pending runtime PM operations on the device are either completed or
-      canceled; returns 1 if there was a resume request pending and it was
-      necessary to execute the subsystem-level resume callback for the device
-      to satisfy that request, otherwise 0 is returned
-
-  int pm_runtime_barrier(struct device *dev);
-    - check if there's a resume request pending for the device and resume it
-      (synchronously) in that case, cancel any other pending runtime PM requests
-      regarding it and wait for all runtime PM operations on it in progress to
-      complete; returns 1 if there was a resume request pending and it was
-      necessary to execute the subsystem-level resume callback for the device to
-      satisfy that request, otherwise 0 is returned
-
-  void pm_suspend_ignore_children(struct device *dev, bool enable);
-    - set/unset the power.ignore_children flag of the device
-
-  int pm_runtime_set_active(struct device *dev);
-    - clear the device's 'power.runtime_error' flag, set the device's runtime
-      PM status to 'active' and update its parent's counter of 'active'
-      children as appropriate (it is only valid to use this function if
-      'power.runtime_error' is set or 'power.disable_depth' is greater than
-      zero); it will fail and return error code if the device has a parent
-      which is not active and the 'power.ignore_children' flag of which is unset
-
-  void pm_runtime_set_suspended(struct device *dev);
-    - clear the device's 'power.runtime_error' flag, set the device's runtime
-      PM status to 'suspended' and update its parent's counter of 'active'
-      children as appropriate (it is only valid to use this function if
-      'power.runtime_error' is set or 'power.disable_depth' is greater than
-      zero)
-
-  bool pm_runtime_active(struct device *dev);
-    - return true if the device's runtime PM status is 'active' or its
-      'power.disable_depth' field is not equal to zero, or false otherwise
-
-  bool pm_runtime_suspended(struct device *dev);
-    - return true if the device's runtime PM status is 'suspended' and its
-      'power.disable_depth' field is equal to zero, or false otherwise
-
-  bool pm_runtime_status_suspended(struct device *dev);
-    - return true if the device's runtime PM status is 'suspended'
-
-  void pm_runtime_allow(struct device *dev);
-    - set the power.runtime_auto flag for the device and decrease its usage
-      counter (used by the /sys/devices/.../power/control interface to
-      effectively allow the device to be power managed at run time)
-
-  void pm_runtime_forbid(struct device *dev);
-    - unset the power.runtime_auto flag for the device and increase its usage
-      counter (used by the /sys/devices/.../power/control interface to
-      effectively prevent the device from being power managed at run time)
-
-  void pm_runtime_no_callbacks(struct device *dev);
-    - set the power.no_callbacks flag for the device and remove the runtime
-      PM attributes from /sys/devices/.../power (or prevent them from being
-      added when the device is registered)
-
-  void pm_runtime_irq_safe(struct device *dev);
-    - set the power.irq_safe flag for the device, causing the runtime-PM
-      callbacks to be invoked with interrupts off
-
-  bool pm_runtime_is_irq_safe(struct device *dev);
-    - return true if power.irq_safe flag was set for the device, causing
-      the runtime-PM callbacks to be invoked with interrupts off
-
-  void pm_runtime_mark_last_busy(struct device *dev);
-    - set the power.last_busy field to the current time
-
-  void pm_runtime_use_autosuspend(struct device *dev);
-    - set the power.use_autosuspend flag, enabling autosuspend delays; call
-      pm_runtime_get_sync if the flag was previously cleared and
-      power.autosuspend_delay is negative
-
-  void pm_runtime_dont_use_autosuspend(struct device *dev);
-    - clear the power.use_autosuspend flag, disabling autosuspend delays;
-      decrement the device's usage counter if the flag was previously set and
-      power.autosuspend_delay is negative; call pm_runtime_idle
-
-  void pm_runtime_set_autosuspend_delay(struct device *dev, int delay);
-    - set the power.autosuspend_delay value to 'delay' (expressed in
-      milliseconds); if 'delay' is negative then runtime suspends are
-      prevented; if power.use_autosuspend is set, pm_runtime_get_sync may be
-      called or the device's usage counter may be decremented and
-      pm_runtime_idle called depending on if power.autosuspend_delay is
-      changed to or from a negative value; if power.use_autosuspend is clear,
-      pm_runtime_idle is called
-
-  unsigned long pm_runtime_autosuspend_expiration(struct device *dev);
-    - calculate the time when the current autosuspend delay period will expire,
-      based on power.last_busy and power.autosuspend_delay; if the delay time
-      is 1000 ms or larger then the expiration time is rounded up to the
-      nearest second; returns 0 if the delay period has already expired or
-      power.use_autosuspend isn't set, otherwise returns the expiration time
-      in jiffies
-
-It is safe to execute the following helper functions from interrupt context:
-
-pm_request_idle()
-pm_request_autosuspend()
-pm_schedule_suspend()
-pm_request_resume()
-pm_runtime_get_noresume()
-pm_runtime_get()
-pm_runtime_put_noidle()
-pm_runtime_put()
-pm_runtime_put_autosuspend()
-pm_runtime_enable()
-pm_suspend_ignore_children()
-pm_runtime_set_active()
-pm_runtime_set_suspended()
-pm_runtime_suspended()
-pm_runtime_mark_last_busy()
-pm_runtime_autosuspend_expiration()
-
-If pm_runtime_irq_safe() has been called for a device then the following helper
-functions may also be used in interrupt context:
-
-pm_runtime_idle()
-pm_runtime_suspend()
-pm_runtime_autosuspend()
-pm_runtime_resume()
-pm_runtime_get_sync()
-pm_runtime_put_sync()
-pm_runtime_put_sync_suspend()
-pm_runtime_put_sync_autosuspend()
-
-5. Runtime PM Initialization, Device Probing and Removal
-
-Initially, the runtime PM is disabled for all devices, which means that the
-majority of the runtime PM helper functions described in Section 4 will return
--EAGAIN until pm_runtime_enable() is called for the device.
-
-In addition to that, the initial runtime PM status of all devices is
-'suspended', but it need not reflect the actual physical state of the device.
-Thus, if the device is initially active (i.e. it is able to process I/O), its
-runtime PM status must be changed to 'active', with the help of
-pm_runtime_set_active(), before pm_runtime_enable() is called for the device.
-
-However, if the device has a parent and the parent's runtime PM is enabled,
-calling pm_runtime_set_active() for the device will affect the parent, unless
-the parent's 'power.ignore_children' flag is set.  Namely, in that case the
-parent won't be able to suspend at run time, using the PM core's helper
-functions, as long as the child's status is 'active', even if the child's
-runtime PM is still disabled (i.e. pm_runtime_enable() hasn't been called for
-the child yet or pm_runtime_disable() has been called for it).  For this reason,
-once pm_runtime_set_active() has been called for the device, pm_runtime_enable()
-should be called for it too as soon as reasonably possible or its runtime PM
-status should be changed back to 'suspended' with the help of
-pm_runtime_set_suspended().
-
-If the default initial runtime PM status of the device (i.e. 'suspended')
-reflects the actual state of the device, its bus type's or its driver's
-->probe() callback will likely need to wake it up using one of the PM core's
-helper functions described in Section 4.  In that case, pm_runtime_resume()
-should be used.  Of course, for this purpose the device's runtime PM has to be
-enabled earlier by calling pm_runtime_enable().
-
-Note, if the device may execute pm_runtime calls during the probe (such as
-if it is registers with a subsystem that may call back in) then the
-pm_runtime_get_sync() call paired with a pm_runtime_put() call will be
-appropriate to ensure that the device is not put back to sleep during the
-probe. This can happen with systems such as the network device layer.
-
-It may be desirable to suspend the device once ->probe() has finished.
-Therefore the driver core uses the asynchronous pm_request_idle() to submit a
-request to execute the subsystem-level idle callback for the device at that
-time.  A driver that makes use of the runtime autosuspend feature, may want to
-update the last busy mark before returning from ->probe().
-
-Moreover, the driver core prevents runtime PM callbacks from racing with the bus
-notifier callback in __device_release_driver(), which is necessary, because the
-notifier is used by some subsystems to carry out operations affecting the
-runtime PM functionality.  It does so by calling pm_runtime_get_sync() before
-driver_sysfs_remove() and the BUS_NOTIFY_UNBIND_DRIVER notifications.  This
-resumes the device if it's in the suspended state and prevents it from
-being suspended again while those routines are being executed.
-
-To allow bus types and drivers to put devices into the suspended state by
-calling pm_runtime_suspend() from their ->remove() routines, the driver core
-executes pm_runtime_put_sync() after running the BUS_NOTIFY_UNBIND_DRIVER
-notifications in __device_release_driver().  This requires bus types and
-drivers to make their ->remove() callbacks avoid races with runtime PM directly,
-but also it allows of more flexibility in the handling of devices during the
-removal of their drivers.
-
-Drivers in ->remove() callback should undo the runtime PM changes done
-in ->probe(). Usually this means calling pm_runtime_disable(),
-pm_runtime_dont_use_autosuspend() etc.
-
-The user space can effectively disallow the driver of the device to power manage
-it at run time by changing the value of its /sys/devices/.../power/control
-attribute to "on", which causes pm_runtime_forbid() to be called.  In principle,
-this mechanism may also be used by the driver to effectively turn off the
-runtime power management of the device until the user space turns it on.
-Namely, during the initialization the driver can make sure that the runtime PM
-status of the device is 'active' and call pm_runtime_forbid().  It should be
-noted, however, that if the user space has already intentionally changed the
-value of /sys/devices/.../power/control to "auto" to allow the driver to power
-manage the device at run time, the driver may confuse it by using
-pm_runtime_forbid() this way.
-
-6. Runtime PM and System Sleep
-
-Runtime PM and system sleep (i.e., system suspend and hibernation, also known
-as suspend-to-RAM and suspend-to-disk) interact with each other in a couple of
-ways.  If a device is active when a system sleep starts, everything is
-straightforward.  But what should happen if the device is already suspended?
-
-The device may have different wake-up settings for runtime PM and system sleep.
-For example, remote wake-up may be enabled for runtime suspend but disallowed
-for system sleep (device_may_wakeup(dev) returns 'false').  When this happens,
-the subsystem-level system suspend callback is responsible for changing the
-device's wake-up setting (it may leave that to the device driver's system
-suspend routine).  It may be necessary to resume the device and suspend it again
-in order to do so.  The same is true if the driver uses different power levels
-or other settings for runtime suspend and system sleep.
-
-During system resume, the simplest approach is to bring all devices back to full
-power, even if they had been suspended before the system suspend began.  There
-are several reasons for this, including:
-
-  * The device might need to switch power levels, wake-up settings, etc.
-
-  * Remote wake-up events might have been lost by the firmware.
-
-  * The device's children may need the device to be at full power in order
-    to resume themselves.
-
-  * The driver's idea of the device state may not agree with the device's
-    physical state.  This can happen during resume from hibernation.
-
-  * The device might need to be reset.
-
-  * Even though the device was suspended, if its usage counter was > 0 then most
-    likely it would need a runtime resume in the near future anyway.
-
-If the device had been suspended before the system suspend began and it's
-brought back to full power during resume, then its runtime PM status will have
-to be updated to reflect the actual post-system sleep status.  The way to do
-this is:
-
-       pm_runtime_disable(dev);
-       pm_runtime_set_active(dev);
-       pm_runtime_enable(dev);
-
-The PM core always increments the runtime usage counter before calling the
-->suspend() callback and decrements it after calling the ->resume() callback.
-Hence disabling runtime PM temporarily like this will not cause any runtime
-suspend attempts to be permanently lost.  If the usage count goes to zero
-following the return of the ->resume() callback, the ->runtime_idle() callback
-will be invoked as usual.
-
-On some systems, however, system sleep is not entered through a global firmware
-or hardware operation.  Instead, all hardware components are put into low-power
-states directly by the kernel in a coordinated way.  Then, the system sleep
-state effectively follows from the states the hardware components end up in
-and the system is woken up from that state by a hardware interrupt or a similar
-mechanism entirely under the kernel's control.  As a result, the kernel never
-gives control away and the states of all devices during resume are precisely
-known to it.  If that is the case and none of the situations listed above takes
-place (in particular, if the system is not waking up from hibernation), it may
-be more efficient to leave the devices that had been suspended before the system
-suspend began in the suspended state.
-
-To this end, the PM core provides a mechanism allowing some coordination between
-different levels of device hierarchy.  Namely, if a system suspend .prepare()
-callback returns a positive number for a device, that indicates to the PM core
-that the device appears to be runtime-suspended and its state is fine, so it
-may be left in runtime suspend provided that all of its descendants are also
-left in runtime suspend.  If that happens, the PM core will not execute any
-system suspend and resume callbacks for all of those devices, except for the
-complete callback, which is then entirely responsible for handling the device
-as appropriate.  This only applies to system suspend transitions that are not
-related to hibernation (see Documentation/driver-api/pm/devices.rst for more
-information).
-
-The PM core does its best to reduce the probability of race conditions between
-the runtime PM and system suspend/resume (and hibernation) callbacks by carrying
-out the following operations:
-
-  * During system suspend pm_runtime_get_noresume() is called for every device
-    right before executing the subsystem-level .prepare() callback for it and
-    pm_runtime_barrier() is called for every device right before executing the
-    subsystem-level .suspend() callback for it.  In addition to that the PM core
-    calls  __pm_runtime_disable() with 'false' as the second argument for every
-    device right before executing the subsystem-level .suspend_late() callback
-    for it.
-
-  * During system resume pm_runtime_enable() and pm_runtime_put() are called for
-    every device right after executing the subsystem-level .resume_early()
-    callback and right after executing the subsystem-level .complete() callback
-    for it, respectively.
-
-7. Generic subsystem callbacks
-
-Subsystems may wish to conserve code space by using the set of generic power
-management callbacks provided by the PM core, defined in
-driver/base/power/generic_ops.c:
-
-  int pm_generic_runtime_suspend(struct device *dev);
-    - invoke the ->runtime_suspend() callback provided by the driver of this
-      device and return its result, or return 0 if not defined
-
-  int pm_generic_runtime_resume(struct device *dev);
-    - invoke the ->runtime_resume() callback provided by the driver of this
-      device and return its result, or return 0 if not defined
-
-  int pm_generic_suspend(struct device *dev);
-    - if the device has not been suspended at run time, invoke the ->suspend()
-      callback provided by its driver and return its result, or return 0 if not
-      defined
-
-  int pm_generic_suspend_noirq(struct device *dev);
-    - if pm_runtime_suspended(dev) returns "false", invoke the ->suspend_noirq()
-      callback provided by the device's driver and return its result, or return
-      0 if not defined
-
-  int pm_generic_resume(struct device *dev);
-    - invoke the ->resume() callback provided by the driver of this device and,
-      if successful, change the device's runtime PM status to 'active'
-
-  int pm_generic_resume_noirq(struct device *dev);
-    - invoke the ->resume_noirq() callback provided by the driver of this device
-
-  int pm_generic_freeze(struct device *dev);
-    - if the device has not been suspended at run time, invoke the ->freeze()
-      callback provided by its driver and return its result, or return 0 if not
-      defined
-
-  int pm_generic_freeze_noirq(struct device *dev);
-    - if pm_runtime_suspended(dev) returns "false", invoke the ->freeze_noirq()
-      callback provided by the device's driver and return its result, or return
-      0 if not defined
-
-  int pm_generic_thaw(struct device *dev);
-    - if the device has not been suspended at run time, invoke the ->thaw()
-      callback provided by its driver and return its result, or return 0 if not
-      defined
-
-  int pm_generic_thaw_noirq(struct device *dev);
-    - if pm_runtime_suspended(dev) returns "false", invoke the ->thaw_noirq()
-      callback provided by the device's driver and return its result, or return
-      0 if not defined
-
-  int pm_generic_poweroff(struct device *dev);
-    - if the device has not been suspended at run time, invoke the ->poweroff()
-      callback provided by its driver and return its result, or return 0 if not
-      defined
-
-  int pm_generic_poweroff_noirq(struct device *dev);
-    - if pm_runtime_suspended(dev) returns "false", run the ->poweroff_noirq()
-      callback provided by the device's driver and return its result, or return
-      0 if not defined
-
-  int pm_generic_restore(struct device *dev);
-    - invoke the ->restore() callback provided by the driver of this device and,
-      if successful, change the device's runtime PM status to 'active'
-
-  int pm_generic_restore_noirq(struct device *dev);
-    - invoke the ->restore_noirq() callback provided by the device's driver
-
-These functions are the defaults used by the PM core, if a subsystem doesn't
-provide its own callbacks for ->runtime_idle(), ->runtime_suspend(),
-->runtime_resume(), ->suspend(), ->suspend_noirq(), ->resume(),
-->resume_noirq(), ->freeze(), ->freeze_noirq(), ->thaw(), ->thaw_noirq(),
-->poweroff(), ->poweroff_noirq(), ->restore(), ->restore_noirq() in the
-subsystem-level dev_pm_ops structure.
-
-Device drivers that wish to use the same function as a system suspend, freeze,
-poweroff and runtime suspend callback, and similarly for system resume, thaw,
-restore, and runtime resume, can achieve this with the help of the
-UNIVERSAL_DEV_PM_OPS macro defined in include/linux/pm.h (possibly setting its
-last argument to NULL).
-
-8. "No-Callback" Devices
-
-Some "devices" are only logical sub-devices of their parent and cannot be
-power-managed on their own.  (The prototype example is a USB interface.  Entire
-USB devices can go into low-power mode or send wake-up requests, but neither is
-possible for individual interfaces.)  The drivers for these devices have no
-need of runtime PM callbacks; if the callbacks did exist, ->runtime_suspend()
-and ->runtime_resume() would always return 0 without doing anything else and
-->runtime_idle() would always call pm_runtime_suspend().
-
-Subsystems can tell the PM core about these devices by calling
-pm_runtime_no_callbacks().  This should be done after the device structure is
-initialized and before it is registered (although after device registration is
-also okay).  The routine will set the device's power.no_callbacks flag and
-prevent the non-debugging runtime PM sysfs attributes from being created.
-
-When power.no_callbacks is set, the PM core will not invoke the
-->runtime_idle(), ->runtime_suspend(), or ->runtime_resume() callbacks.
-Instead it will assume that suspends and resumes always succeed and that idle
-devices should be suspended.
-
-As a consequence, the PM core will never directly inform the device's subsystem
-or driver about runtime power changes.  Instead, the driver for the device's
-parent must take responsibility for telling the device's driver when the
-parent's power state changes.
-
-9. Autosuspend, or automatically-delayed suspends
-
-Changing a device's power state isn't free; it requires both time and energy.
-A device should be put in a low-power state only when there's some reason to
-think it will remain in that state for a substantial time.  A common heuristic
-says that a device which hasn't been used for a while is liable to remain
-unused; following this advice, drivers should not allow devices to be suspended
-at runtime until they have been inactive for some minimum period.  Even when
-the heuristic ends up being non-optimal, it will still prevent devices from
-"bouncing" too rapidly between low-power and full-power states.
-
-The term "autosuspend" is an historical remnant.  It doesn't mean that the
-device is automatically suspended (the subsystem or driver still has to call
-the appropriate PM routines); rather it means that runtime suspends will
-automatically be delayed until the desired period of inactivity has elapsed.
-
-Inactivity is determined based on the power.last_busy field.  Drivers should
-call pm_runtime_mark_last_busy() to update this field after carrying out I/O,
-typically just before calling pm_runtime_put_autosuspend().  The desired length
-of the inactivity period is a matter of policy.  Subsystems can set this length
-initially by calling pm_runtime_set_autosuspend_delay(), but after device
-registration the length should be controlled by user space, using the
-/sys/devices/.../power/autosuspend_delay_ms attribute.
-
-In order to use autosuspend, subsystems or drivers must call
-pm_runtime_use_autosuspend() (preferably before registering the device), and
-thereafter they should use the various *_autosuspend() helper functions instead
-of the non-autosuspend counterparts:
-
-       Instead of: pm_runtime_suspend    use: pm_runtime_autosuspend;
-       Instead of: pm_schedule_suspend   use: pm_request_autosuspend;
-       Instead of: pm_runtime_put        use: pm_runtime_put_autosuspend;
-       Instead of: pm_runtime_put_sync   use: pm_runtime_put_sync_autosuspend.
-
-Drivers may also continue to use the non-autosuspend helper functions; they
-will behave normally, which means sometimes taking the autosuspend delay into
-account (see pm_runtime_idle).
-
-Under some circumstances a driver or subsystem may want to prevent a device
-from autosuspending immediately, even though the usage counter is zero and the
-autosuspend delay time has expired.  If the ->runtime_suspend() callback
-returns -EAGAIN or -EBUSY, and if the next autosuspend delay expiration time is
-in the future (as it normally would be if the callback invoked
-pm_runtime_mark_last_busy()), the PM core will automatically reschedule the
-autosuspend.  The ->runtime_suspend() callback can't do this rescheduling
-itself because no suspend requests of any kind are accepted while the device is
-suspending (i.e., while the callback is running).
-
-The implementation is well suited for asynchronous use in interrupt contexts.
-However such use inevitably involves races, because the PM core can't
-synchronize ->runtime_suspend() callbacks with the arrival of I/O requests.
-This synchronization must be handled by the driver, using its private lock.
-Here is a schematic pseudo-code example:
-
-       foo_read_or_write(struct foo_priv *foo, void *data)
-       {
-               lock(&foo->private_lock);
-               add_request_to_io_queue(foo, data);
-               if (foo->num_pending_requests++ == 0)
-                       pm_runtime_get(&foo->dev);
-               if (!foo->is_suspended)
-                       foo_process_next_request(foo);
-               unlock(&foo->private_lock);
-       }
-
-       foo_io_completion(struct foo_priv *foo, void *req)
-       {
-               lock(&foo->private_lock);
-               if (--foo->num_pending_requests == 0) {
-                       pm_runtime_mark_last_busy(&foo->dev);
-                       pm_runtime_put_autosuspend(&foo->dev);
-               } else {
-                       foo_process_next_request(foo);
-               }
-               unlock(&foo->private_lock);
-               /* Send req result back to the user ... */
-       }
-
-       int foo_runtime_suspend(struct device *dev)
-       {
-               struct foo_priv foo = container_of(dev, ...);
-               int ret = 0;
-
-               lock(&foo->private_lock);
-               if (foo->num_pending_requests > 0) {
-                       ret = -EBUSY;
-               } else {
-                       /* ... suspend the device ... */
-                       foo->is_suspended = 1;
-               }
-               unlock(&foo->private_lock);
-               return ret;
-       }
-
-       int foo_runtime_resume(struct device *dev)
-       {
-               struct foo_priv foo = container_of(dev, ...);
-
-               lock(&foo->private_lock);
-               /* ... resume the device ... */
-               foo->is_suspended = 0;
-               pm_runtime_mark_last_busy(&foo->dev);
-               if (foo->num_pending_requests > 0)
-                       foo_process_next_request(foo);
-               unlock(&foo->private_lock);
-               return 0;
-       }
-
-The important point is that after foo_io_completion() asks for an autosuspend,
-the foo_runtime_suspend() callback may race with foo_read_or_write().
-Therefore foo_runtime_suspend() has to check whether there are any pending I/O
-requests (while holding the private lock) before allowing the suspend to
-proceed.
-
-In addition, the power.autosuspend_delay field can be changed by user space at
-any time.  If a driver cares about this, it can call
-pm_runtime_autosuspend_expiration() from within the ->runtime_suspend()
-callback while holding its private lock.  If the function returns a nonzero
-value then the delay has not yet expired and the callback should return
--EAGAIN.
diff --git a/Documentation/power/s2ram.rst b/Documentation/power/s2ram.rst
new file mode 100644 (file)
index 0000000..d739aa7
--- /dev/null
@@ -0,0 +1,87 @@
+========================
+How to get s2ram working
+========================
+
+2006 Linus Torvalds
+2006 Pavel Machek
+
+1) Check suspend.sf.net, program s2ram there has long whitelist of
+   "known ok" machines, along with tricks to use on each one.
+
+2) If that does not help, try reading tricks.txt and
+   video.txt. Perhaps problem is as simple as broken module, and
+   simple module unload can fix it.
+
+3) You can use Linus' TRACE_RESUME infrastructure, described below.
+
+Using TRACE_RESUME
+~~~~~~~~~~~~~~~~~~
+
+I've been working at making the machines I have able to STR, and almost
+always it's a driver that is buggy. Thank God for the suspend/resume
+debugging - the thing that Chuck tried to disable. That's often the _only_
+way to debug these things, and it's actually pretty powerful (but
+time-consuming - having to insert TRACE_RESUME() markers into the device
+driver that doesn't resume and recompile and reboot).
+
+Anyway, the way to debug this for people who are interested (have a
+machine that doesn't boot) is:
+
+ - enable PM_DEBUG, and PM_TRACE
+
+ - use a script like this::
+
+       #!/bin/sh
+       sync
+       echo 1 > /sys/power/pm_trace
+       echo mem > /sys/power/state
+
+   to suspend
+
+ - if it doesn't come back up (which is usually the problem), reboot by
+   holding the power button down, and look at the dmesg output for things
+   like::
+
+       Magic number: 4:156:725
+       hash matches drivers/base/power/resume.c:28
+       hash matches device 0000:01:00.0
+
+   which means that the last trace event was just before trying to resume
+   device 0000:01:00.0. Then figure out what driver is controlling that
+   device (lspci and /sys/devices/pci* is your friend), and see if you can
+   fix it, disable it, or trace into its resume function.
+
+   If no device matches the hash (or any matches appear to be false positives),
+   the culprit may be a device from a loadable kernel module that is not loaded
+   until after the hash is checked. You can check the hash against the current
+   devices again after more modules are loaded using sysfs::
+
+       cat /sys/power/pm_trace_dev_match
+
+For example, the above happens to be the VGA device on my EVO, which I
+used to run with "radeonfb" (it's an ATI Radeon mobility). It turns out
+that "radeonfb" simply cannot resume that device - it tries to set the
+PLL's, and it just _hangs_. Using the regular VGA console and letting X
+resume it instead works fine.
+
+NOTE
+====
+pm_trace uses the system's Real Time Clock (RTC) to save the magic number.
+Reason for this is that the RTC is the only reliably available piece of
+hardware during resume operations where a value can be set that will
+survive a reboot.
+
+pm_trace is not compatible with asynchronous suspend, so it turns
+asynchronous suspend off (which may work around timing or
+ordering-sensitive bugs).
+
+Consequence is that after a resume (even if it is successful) your system
+clock will have a value corresponding to the magic number instead of the
+correct date/time! It is therefore advisable to use a program like ntp-date
+or rdate to reset the correct date/time from an external time source when
+using this trace option.
+
+As the clock keeps ticking it is also essential that the reboot is done
+quickly after the resume failure. The trace option does not use the seconds
+or the low order bits of the minutes of the RTC, but a too long delay will
+corrupt the magic value.
diff --git a/Documentation/power/s2ram.txt b/Documentation/power/s2ram.txt
deleted file mode 100644 (file)
index 4685aee..0000000
+++ /dev/null
@@ -1,85 +0,0 @@
-                       How to get s2ram working
-                       ~~~~~~~~~~~~~~~~~~~~~~~~
-                       2006 Linus Torvalds
-                       2006 Pavel Machek
-
-1) Check suspend.sf.net, program s2ram there has long whitelist of
-   "known ok" machines, along with tricks to use on each one.
-
-2) If that does not help, try reading tricks.txt and
-   video.txt. Perhaps problem is as simple as broken module, and
-   simple module unload can fix it.
-
-3) You can use Linus' TRACE_RESUME infrastructure, described below.
-
-                     Using TRACE_RESUME
-                     ~~~~~~~~~~~~~~~~~~
-
-I've been working at making the machines I have able to STR, and almost
-always it's a driver that is buggy. Thank God for the suspend/resume
-debugging - the thing that Chuck tried to disable. That's often the _only_
-way to debug these things, and it's actually pretty powerful (but
-time-consuming - having to insert TRACE_RESUME() markers into the device
-driver that doesn't resume and recompile and reboot).
-
-Anyway, the way to debug this for people who are interested (have a
-machine that doesn't boot) is:
-
- - enable PM_DEBUG, and PM_TRACE
-
- - use a script like this:
-
-       #!/bin/sh
-       sync
-       echo 1 > /sys/power/pm_trace
-       echo mem > /sys/power/state
-
-   to suspend
-
- - if it doesn't come back up (which is usually the problem), reboot by
-   holding the power button down, and look at the dmesg output for things
-   like
-
-       Magic number: 4:156:725
-       hash matches drivers/base/power/resume.c:28
-       hash matches device 0000:01:00.0
-
-   which means that the last trace event was just before trying to resume
-   device 0000:01:00.0. Then figure out what driver is controlling that
-   device (lspci and /sys/devices/pci* is your friend), and see if you can
-   fix it, disable it, or trace into its resume function.
-
-   If no device matches the hash (or any matches appear to be false positives),
-   the culprit may be a device from a loadable kernel module that is not loaded
-   until after the hash is checked. You can check the hash against the current
-   devices again after more modules are loaded using sysfs:
-
-       cat /sys/power/pm_trace_dev_match
-
-For example, the above happens to be the VGA device on my EVO, which I
-used to run with "radeonfb" (it's an ATI Radeon mobility). It turns out
-that "radeonfb" simply cannot resume that device - it tries to set the
-PLL's, and it just _hangs_. Using the regular VGA console and letting X
-resume it instead works fine.
-
-NOTE
-====
-pm_trace uses the system's Real Time Clock (RTC) to save the magic number.
-Reason for this is that the RTC is the only reliably available piece of
-hardware during resume operations where a value can be set that will
-survive a reboot.
-
-pm_trace is not compatible with asynchronous suspend, so it turns
-asynchronous suspend off (which may work around timing or
-ordering-sensitive bugs).
-
-Consequence is that after a resume (even if it is successful) your system
-clock will have a value corresponding to the magic number instead of the
-correct date/time! It is therefore advisable to use a program like ntp-date
-or rdate to reset the correct date/time from an external time source when
-using this trace option.
-
-As the clock keeps ticking it is also essential that the reboot is done
-quickly after the resume failure. The trace option does not use the seconds
-or the low order bits of the minutes of the RTC, but a too long delay will
-corrupt the magic value.
diff --git a/Documentation/power/suspend-and-cpuhotplug.rst b/Documentation/power/suspend-and-cpuhotplug.rst
new file mode 100644 (file)
index 0000000..7ac8e1f
--- /dev/null
@@ -0,0 +1,286 @@
+====================================================================
+Interaction of Suspend code (S3) with the CPU hotplug infrastructure
+====================================================================
+
+(C) 2011 - 2014 Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
+
+
+I. Differences between CPU hotplug and Suspend-to-RAM
+======================================================
+
+How does the regular CPU hotplug code differ from how the Suspend-to-RAM
+infrastructure uses it internally? And where do they share common code?
+
+Well, a picture is worth a thousand words... So ASCII art follows :-)
+
+[This depicts the current design in the kernel, and focusses only on the
+interactions involving the freezer and CPU hotplug and also tries to explain
+the locking involved. It outlines the notifications involved as well.
+But please note that here, only the call paths are illustrated, with the aim
+of describing where they take different paths and where they share code.
+What happens when regular CPU hotplug and Suspend-to-RAM race with each other
+is not depicted here.]
+
+On a high level, the suspend-resume cycle goes like this::
+
+  |Freeze| -> |Disable nonboot| -> |Do suspend| -> |Enable nonboot| -> |Thaw |
+  |tasks |    |     cpus      |    |          |    |     cpus     |    |tasks|
+
+
+More details follow::
+
+                                Suspend call path
+                                -----------------
+
+                                  Write 'mem' to
+                                /sys/power/state
+                                    sysfs file
+                                        |
+                                        v
+                               Acquire system_transition_mutex lock
+                                        |
+                                        v
+                             Send PM_SUSPEND_PREPARE
+                                   notifications
+                                        |
+                                        v
+                                   Freeze tasks
+                                        |
+                                        |
+                                        v
+                              disable_nonboot_cpus()
+                                   /* start */
+                                        |
+                                        v
+                            Acquire cpu_add_remove_lock
+                                        |
+                                        v
+                             Iterate over CURRENTLY
+                                   online CPUs
+                                        |
+                                        |
+                                        |                ----------
+                                        v                          | L
+             ======>               _cpu_down()                     |
+            |              [This takes cpuhotplug.lock             |
+  Common    |               before taking down the CPU             |
+   code     |               and releases it when done]             | O
+            |            While it is at it, notifications          |
+            |            are sent when notable events occur,       |
+             ======>     by running all registered callbacks.      |
+                                        |                          | O
+                                        |                          |
+                                        |                          |
+                                        v                          |
+                            Note down these cpus in                | P
+                                frozen_cpus mask         ----------
+                                        |
+                                        v
+                           Disable regular cpu hotplug
+                        by increasing cpu_hotplug_disabled
+                                        |
+                                        v
+                            Release cpu_add_remove_lock
+                                        |
+                                        v
+                       /* disable_nonboot_cpus() complete */
+                                        |
+                                        v
+                                   Do suspend
+
+
+
+Resuming back is likewise, with the counterparts being (in the order of
+execution during resume):
+
+* enable_nonboot_cpus() which involves::
+
+   |  Acquire cpu_add_remove_lock
+   |  Decrease cpu_hotplug_disabled, thereby enabling regular cpu hotplug
+   |  Call _cpu_up() [for all those cpus in the frozen_cpus mask, in a loop]
+   |  Release cpu_add_remove_lock
+   v
+
+* thaw tasks
+* send PM_POST_SUSPEND notifications
+* Release system_transition_mutex lock.
+
+
+It is to be noted here that the system_transition_mutex lock is acquired at the very
+beginning, when we are just starting out to suspend, and then released only
+after the entire cycle is complete (i.e., suspend + resume).
+
+::
+
+
+
+                          Regular CPU hotplug call path
+                          -----------------------------
+
+                                Write 0 (or 1) to
+                       /sys/devices/system/cpu/cpu*/online
+                                    sysfs file
+                                        |
+                                        |
+                                        v
+                                    cpu_down()
+                                        |
+                                        v
+                           Acquire cpu_add_remove_lock
+                                        |
+                                        v
+                          If cpu_hotplug_disabled > 0
+                                return gracefully
+                                        |
+                                        |
+                                        v
+             ======>                _cpu_down()
+            |              [This takes cpuhotplug.lock
+  Common    |               before taking down the CPU
+   code     |               and releases it when done]
+            |            While it is at it, notifications
+            |           are sent when notable events occur,
+             ======>    by running all registered callbacks.
+                                        |
+                                        |
+                                        v
+                          Release cpu_add_remove_lock
+                               [That's it!, for
+                              regular CPU hotplug]
+
+
+
+So, as can be seen from the two diagrams (the parts marked as "Common code"),
+regular CPU hotplug and the suspend code path converge at the _cpu_down() and
+_cpu_up() functions. They differ in the arguments passed to these functions,
+in that during regular CPU hotplug, 0 is passed for the 'tasks_frozen'
+argument. But during suspend, since the tasks are already frozen by the time
+the non-boot CPUs are offlined or onlined, the _cpu_*() functions are called
+with the 'tasks_frozen' argument set to 1.
+[See below for some known issues regarding this.]
+
+
+Important files and functions/entry points:
+-------------------------------------------
+
+- kernel/power/process.c : freeze_processes(), thaw_processes()
+- kernel/power/suspend.c : suspend_prepare(), suspend_enter(), suspend_finish()
+- kernel/cpu.c: cpu_[up|down](), _cpu_[up|down](), [disable|enable]_nonboot_cpus()
+
+
+
+II. What are the issues involved in CPU hotplug?
+------------------------------------------------
+
+There are some interesting situations involving CPU hotplug and microcode
+update on the CPUs, as discussed below:
+
+[Please bear in mind that the kernel requests the microcode images from
+userspace, using the request_firmware() function defined in
+drivers/base/firmware_loader/main.c]
+
+
+a. When all the CPUs are identical:
+
+   This is the most common situation and it is quite straightforward: we want
+   to apply the same microcode revision to each of the CPUs.
+   To give an example of x86, the collect_cpu_info() function defined in
+   arch/x86/kernel/microcode_core.c helps in discovering the type of the CPU
+   and thereby in applying the correct microcode revision to it.
+   But note that the kernel does not maintain a common microcode image for the
+   all CPUs, in order to handle case 'b' described below.
+
+
+b. When some of the CPUs are different than the rest:
+
+   In this case since we probably need to apply different microcode revisions
+   to different CPUs, the kernel maintains a copy of the correct microcode
+   image for each CPU (after appropriate CPU type/model discovery using
+   functions such as collect_cpu_info()).
+
+
+c. When a CPU is physically hot-unplugged and a new (and possibly different
+   type of) CPU is hot-plugged into the system:
+
+   In the current design of the kernel, whenever a CPU is taken offline during
+   a regular CPU hotplug operation, upon receiving the CPU_DEAD notification
+   (which is sent by the CPU hotplug code), the microcode update driver's
+   callback for that event reacts by freeing the kernel's copy of the
+   microcode image for that CPU.
+
+   Hence, when a new CPU is brought online, since the kernel finds that it
+   doesn't have the microcode image, it does the CPU type/model discovery
+   afresh and then requests the userspace for the appropriate microcode image
+   for that CPU, which is subsequently applied.
+
+   For example, in x86, the mc_cpu_callback() function (which is the microcode
+   update driver's callback registered for CPU hotplug events) calls
+   microcode_update_cpu() which would call microcode_init_cpu() in this case,
+   instead of microcode_resume_cpu() when it finds that the kernel doesn't
+   have a valid microcode image. This ensures that the CPU type/model
+   discovery is performed and the right microcode is applied to the CPU after
+   getting it from userspace.
+
+
+d. Handling microcode update during suspend/hibernate:
+
+   Strictly speaking, during a CPU hotplug operation which does not involve
+   physically removing or inserting CPUs, the CPUs are not actually powered
+   off during a CPU offline. They are just put to the lowest C-states possible.
+   Hence, in such a case, it is not really necessary to re-apply microcode
+   when the CPUs are brought back online, since they wouldn't have lost the
+   image during the CPU offline operation.
+
+   This is the usual scenario encountered during a resume after a suspend.
+   However, in the case of hibernation, since all the CPUs are completely
+   powered off, during restore it becomes necessary to apply the microcode
+   images to all the CPUs.
+
+   [Note that we don't expect someone to physically pull out nodes and insert
+   nodes with a different type of CPUs in-between a suspend-resume or a
+   hibernate/restore cycle.]
+
+   In the current design of the kernel however, during a CPU offline operation
+   as part of the suspend/hibernate cycle (cpuhp_tasks_frozen is set),
+   the existing copy of microcode image in the kernel is not freed up.
+   And during the CPU online operations (during resume/restore), since the
+   kernel finds that it already has copies of the microcode images for all the
+   CPUs, it just applies them to the CPUs, avoiding any re-discovery of CPU
+   type/model and the need for validating whether the microcode revisions are
+   right for the CPUs or not (due to the above assumption that physical CPU
+   hotplug will not be done in-between suspend/resume or hibernate/restore
+   cycles).
+
+
+III. Known problems
+===================
+
+Are there any known problems when regular CPU hotplug and suspend race
+with each other?
+
+Yes, they are listed below:
+
+1. When invoking regular CPU hotplug, the 'tasks_frozen' argument passed to
+   the _cpu_down() and _cpu_up() functions is *always* 0.
+   This might not reflect the true current state of the system, since the
+   tasks could have been frozen by an out-of-band event such as a suspend
+   operation in progress. Hence, the cpuhp_tasks_frozen variable will not
+   reflect the frozen state and the CPU hotplug callbacks which evaluate
+   that variable might execute the wrong code path.
+
+2. If a regular CPU hotplug stress test happens to race with the freezer due
+   to a suspend operation in progress at the same time, then we could hit the
+   situation described below:
+
+    * A regular cpu online operation continues its journey from userspace
+      into the kernel, since the freezing has not yet begun.
+    * Then freezer gets to work and freezes userspace.
+    * If cpu online has not yet completed the microcode update stuff by now,
+      it will now start waiting on the frozen userspace in the
+      TASK_UNINTERRUPTIBLE state, in order to get the microcode image.
+    * Now the freezer continues and tries to freeze the remaining tasks. But
+      due to this wait mentioned above, the freezer won't be able to freeze
+      the cpu online hotplug task and hence freezing of tasks fails.
+
+   As a result of this task freezing failure, the suspend operation gets
+   aborted.
diff --git a/Documentation/power/suspend-and-cpuhotplug.txt b/Documentation/power/suspend-and-cpuhotplug.txt
deleted file mode 100644 (file)
index a8751b8..0000000
+++ /dev/null
@@ -1,274 +0,0 @@
-Interaction of Suspend code (S3) with the CPU hotplug infrastructure
-
-     (C) 2011 - 2014 Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
-
-
-I. How does the regular CPU hotplug code differ from how the Suspend-to-RAM
-   infrastructure uses it internally? And where do they share common code?
-
-Well, a picture is worth a thousand words... So ASCII art follows :-)
-
-[This depicts the current design in the kernel, and focusses only on the
-interactions involving the freezer and CPU hotplug and also tries to explain
-the locking involved. It outlines the notifications involved as well.
-But please note that here, only the call paths are illustrated, with the aim
-of describing where they take different paths and where they share code.
-What happens when regular CPU hotplug and Suspend-to-RAM race with each other
-is not depicted here.]
-
-On a high level, the suspend-resume cycle goes like this:
-
-|Freeze| -> |Disable nonboot| -> |Do suspend| -> |Enable nonboot| -> |Thaw |
-|tasks |    |     cpus      |    |          |    |     cpus     |    |tasks|
-
-
-More details follow:
-
-                                Suspend call path
-                                -----------------
-
-                                  Write 'mem' to
-                                /sys/power/state
-                                    sysfs file
-                                        |
-                                        v
-                               Acquire system_transition_mutex lock
-                                        |
-                                        v
-                             Send PM_SUSPEND_PREPARE
-                                   notifications
-                                        |
-                                        v
-                                   Freeze tasks
-                                        |
-                                        |
-                                        v
-                              disable_nonboot_cpus()
-                                   /* start */
-                                        |
-                                        v
-                            Acquire cpu_add_remove_lock
-                                        |
-                                        v
-                             Iterate over CURRENTLY
-                                   online CPUs
-                                        |
-                                        |
-                                        |                ----------
-                                        v                          | L
-             ======>               _cpu_down()                     |
-            |              [This takes cpuhotplug.lock             |
-  Common    |               before taking down the CPU             |
-   code     |               and releases it when done]             | O
-            |            While it is at it, notifications          |
-            |            are sent when notable events occur,       |
-             ======>     by running all registered callbacks.      |
-                                        |                          | O
-                                        |                          |
-                                        |                          |
-                                        v                          |
-                            Note down these cpus in                | P
-                                frozen_cpus mask         ----------
-                                        |
-                                        v
-                           Disable regular cpu hotplug
-                        by increasing cpu_hotplug_disabled
-                                        |
-                                        v
-                            Release cpu_add_remove_lock
-                                        |
-                                        v
-                       /* disable_nonboot_cpus() complete */
-                                        |
-                                        v
-                                   Do suspend
-
-
-
-Resuming back is likewise, with the counterparts being (in the order of
-execution during resume):
-* enable_nonboot_cpus() which involves:
-   |  Acquire cpu_add_remove_lock
-   |  Decrease cpu_hotplug_disabled, thereby enabling regular cpu hotplug
-   |  Call _cpu_up() [for all those cpus in the frozen_cpus mask, in a loop]
-   |  Release cpu_add_remove_lock
-   v
-
-* thaw tasks
-* send PM_POST_SUSPEND notifications
-* Release system_transition_mutex lock.
-
-
-It is to be noted here that the system_transition_mutex lock is acquired at the very
-beginning, when we are just starting out to suspend, and then released only
-after the entire cycle is complete (i.e., suspend + resume).
-
-
-
-                          Regular CPU hotplug call path
-                          -----------------------------
-
-                                Write 0 (or 1) to
-                       /sys/devices/system/cpu/cpu*/online
-                                    sysfs file
-                                        |
-                                        |
-                                        v
-                                    cpu_down()
-                                        |
-                                        v
-                           Acquire cpu_add_remove_lock
-                                        |
-                                        v
-                          If cpu_hotplug_disabled > 0
-                                return gracefully
-                                        |
-                                        |
-                                        v
-             ======>                _cpu_down()
-            |              [This takes cpuhotplug.lock
-  Common    |               before taking down the CPU
-   code     |               and releases it when done]
-            |            While it is at it, notifications
-            |           are sent when notable events occur,
-             ======>    by running all registered callbacks.
-                                        |
-                                        |
-                                        v
-                          Release cpu_add_remove_lock
-                               [That's it!, for
-                              regular CPU hotplug]
-
-
-
-So, as can be seen from the two diagrams (the parts marked as "Common code"),
-regular CPU hotplug and the suspend code path converge at the _cpu_down() and
-_cpu_up() functions. They differ in the arguments passed to these functions,
-in that during regular CPU hotplug, 0 is passed for the 'tasks_frozen'
-argument. But during suspend, since the tasks are already frozen by the time
-the non-boot CPUs are offlined or onlined, the _cpu_*() functions are called
-with the 'tasks_frozen' argument set to 1.
-[See below for some known issues regarding this.]
-
-
-Important files and functions/entry points:
-------------------------------------------
-
-kernel/power/process.c : freeze_processes(), thaw_processes()
-kernel/power/suspend.c : suspend_prepare(), suspend_enter(), suspend_finish()
-kernel/cpu.c: cpu_[up|down](), _cpu_[up|down](), [disable|enable]_nonboot_cpus()
-
-
-
-II. What are the issues involved in CPU hotplug?
-    -------------------------------------------
-
-There are some interesting situations involving CPU hotplug and microcode
-update on the CPUs, as discussed below:
-
-[Please bear in mind that the kernel requests the microcode images from
-userspace, using the request_firmware() function defined in
-drivers/base/firmware_loader/main.c]
-
-
-a. When all the CPUs are identical:
-
-   This is the most common situation and it is quite straightforward: we want
-   to apply the same microcode revision to each of the CPUs.
-   To give an example of x86, the collect_cpu_info() function defined in
-   arch/x86/kernel/microcode_core.c helps in discovering the type of the CPU
-   and thereby in applying the correct microcode revision to it.
-   But note that the kernel does not maintain a common microcode image for the
-   all CPUs, in order to handle case 'b' described below.
-
-
-b. When some of the CPUs are different than the rest:
-
-   In this case since we probably need to apply different microcode revisions
-   to different CPUs, the kernel maintains a copy of the correct microcode
-   image for each CPU (after appropriate CPU type/model discovery using
-   functions such as collect_cpu_info()).
-
-
-c. When a CPU is physically hot-unplugged and a new (and possibly different
-   type of) CPU is hot-plugged into the system:
-
-   In the current design of the kernel, whenever a CPU is taken offline during
-   a regular CPU hotplug operation, upon receiving the CPU_DEAD notification
-   (which is sent by the CPU hotplug code), the microcode update driver's
-   callback for that event reacts by freeing the kernel's copy of the
-   microcode image for that CPU.
-
-   Hence, when a new CPU is brought online, since the kernel finds that it
-   doesn't have the microcode image, it does the CPU type/model discovery
-   afresh and then requests the userspace for the appropriate microcode image
-   for that CPU, which is subsequently applied.
-
-   For example, in x86, the mc_cpu_callback() function (which is the microcode
-   update driver's callback registered for CPU hotplug events) calls
-   microcode_update_cpu() which would call microcode_init_cpu() in this case,
-   instead of microcode_resume_cpu() when it finds that the kernel doesn't
-   have a valid microcode image. This ensures that the CPU type/model
-   discovery is performed and the right microcode is applied to the CPU after
-   getting it from userspace.
-
-
-d. Handling microcode update during suspend/hibernate:
-
-   Strictly speaking, during a CPU hotplug operation which does not involve
-   physically removing or inserting CPUs, the CPUs are not actually powered
-   off during a CPU offline. They are just put to the lowest C-states possible.
-   Hence, in such a case, it is not really necessary to re-apply microcode
-   when the CPUs are brought back online, since they wouldn't have lost the
-   image during the CPU offline operation.
-
-   This is the usual scenario encountered during a resume after a suspend.
-   However, in the case of hibernation, since all the CPUs are completely
-   powered off, during restore it becomes necessary to apply the microcode
-   images to all the CPUs.
-
-   [Note that we don't expect someone to physically pull out nodes and insert
-   nodes with a different type of CPUs in-between a suspend-resume or a
-   hibernate/restore cycle.]
-
-   In the current design of the kernel however, during a CPU offline operation
-   as part of the suspend/hibernate cycle (cpuhp_tasks_frozen is set),
-   the existing copy of microcode image in the kernel is not freed up.
-   And during the CPU online operations (during resume/restore), since the
-   kernel finds that it already has copies of the microcode images for all the
-   CPUs, it just applies them to the CPUs, avoiding any re-discovery of CPU
-   type/model and the need for validating whether the microcode revisions are
-   right for the CPUs or not (due to the above assumption that physical CPU
-   hotplug will not be done in-between suspend/resume or hibernate/restore
-   cycles).
-
-
-III. Are there any known problems when regular CPU hotplug and suspend race
-     with each other?
-
-Yes, they are listed below:
-
-1. When invoking regular CPU hotplug, the 'tasks_frozen' argument passed to
-   the _cpu_down() and _cpu_up() functions is *always* 0.
-   This might not reflect the true current state of the system, since the
-   tasks could have been frozen by an out-of-band event such as a suspend
-   operation in progress. Hence, the cpuhp_tasks_frozen variable will not
-   reflect the frozen state and the CPU hotplug callbacks which evaluate
-   that variable might execute the wrong code path.
-
-2. If a regular CPU hotplug stress test happens to race with the freezer due
-   to a suspend operation in progress at the same time, then we could hit the
-   situation described below:
-
-    * A regular cpu online operation continues its journey from userspace
-      into the kernel, since the freezing has not yet begun.
-    * Then freezer gets to work and freezes userspace.
-    * If cpu online has not yet completed the microcode update stuff by now,
-      it will now start waiting on the frozen userspace in the
-      TASK_UNINTERRUPTIBLE state, in order to get the microcode image.
-    * Now the freezer continues and tries to freeze the remaining tasks. But
-      due to this wait mentioned above, the freezer won't be able to freeze
-      the cpu online hotplug task and hence freezing of tasks fails.
-
-   As a result of this task freezing failure, the suspend operation gets
-   aborted.
diff --git a/Documentation/power/suspend-and-interrupts.rst b/Documentation/power/suspend-and-interrupts.rst
new file mode 100644 (file)
index 0000000..4cda661
--- /dev/null
@@ -0,0 +1,137 @@
+====================================
+System Suspend and Device Interrupts
+====================================
+
+Copyright (C) 2014 Intel Corp.
+Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+
+
+Suspending and Resuming Device IRQs
+-----------------------------------
+
+Device interrupt request lines (IRQs) are generally disabled during system
+suspend after the "late" phase of suspending devices (that is, after all of the
+->prepare, ->suspend and ->suspend_late callbacks have been executed for all
+devices).  That is done by suspend_device_irqs().
+
+The rationale for doing so is that after the "late" phase of device suspend
+there is no legitimate reason why any interrupts from suspended devices should
+trigger and if any devices have not been suspended properly yet, it is better to
+block interrupts from them anyway.  Also, in the past we had problems with
+interrupt handlers for shared IRQs that device drivers implementing them were
+not prepared for interrupts triggering after their devices had been suspended.
+In some cases they would attempt to access, for example, memory address spaces
+of suspended devices and cause unpredictable behavior to ensue as a result.
+Unfortunately, such problems are very difficult to debug and the introduction
+of suspend_device_irqs(), along with the "noirq" phase of device suspend and
+resume, was the only practical way to mitigate them.
+
+Device IRQs are re-enabled during system resume, right before the "early" phase
+of resuming devices (that is, before starting to execute ->resume_early
+callbacks for devices).  The function doing that is resume_device_irqs().
+
+
+The IRQF_NO_SUSPEND Flag
+------------------------
+
+There are interrupts that can legitimately trigger during the entire system
+suspend-resume cycle, including the "noirq" phases of suspending and resuming
+devices as well as during the time when nonboot CPUs are taken offline and
+brought back online.  That applies to timer interrupts in the first place,
+but also to IPIs and to some other special-purpose interrupts.
+
+The IRQF_NO_SUSPEND flag is used to indicate that to the IRQ subsystem when
+requesting a special-purpose interrupt.  It causes suspend_device_irqs() to
+leave the corresponding IRQ enabled so as to allow the interrupt to work as
+expected during the suspend-resume cycle, but does not guarantee that the
+interrupt will wake the system from a suspended state -- for such cases it is
+necessary to use enable_irq_wake().
+
+Note that the IRQF_NO_SUSPEND flag affects the entire IRQ and not just one
+user of it.  Thus, if the IRQ is shared, all of the interrupt handlers installed
+for it will be executed as usual after suspend_device_irqs(), even if the
+IRQF_NO_SUSPEND flag was not passed to request_irq() (or equivalent) by some of
+the IRQ's users.  For this reason, using IRQF_NO_SUSPEND and IRQF_SHARED at the
+same time should be avoided.
+
+
+System Wakeup Interrupts, enable_irq_wake() and disable_irq_wake()
+------------------------------------------------------------------
+
+System wakeup interrupts generally need to be configured to wake up the system
+from sleep states, especially if they are used for different purposes (e.g. as
+I/O interrupts) in the working state.
+
+That may involve turning on a special signal handling logic within the platform
+(such as an SoC) so that signals from a given line are routed in a different way
+during system sleep so as to trigger a system wakeup when needed.  For example,
+the platform may include a dedicated interrupt controller used specifically for
+handling system wakeup events.  Then, if a given interrupt line is supposed to
+wake up the system from sleep sates, the corresponding input of that interrupt
+controller needs to be enabled to receive signals from the line in question.
+After wakeup, it generally is better to disable that input to prevent the
+dedicated controller from triggering interrupts unnecessarily.
+
+The IRQ subsystem provides two helper functions to be used by device drivers for
+those purposes.  Namely, enable_irq_wake() turns on the platform's logic for
+handling the given IRQ as a system wakeup interrupt line and disable_irq_wake()
+turns that logic off.
+
+Calling enable_irq_wake() causes suspend_device_irqs() to treat the given IRQ
+in a special way.  Namely, the IRQ remains enabled, by on the first interrupt
+it will be disabled, marked as pending and "suspended" so that it will be
+re-enabled by resume_device_irqs() during the subsequent system resume.  Also
+the PM core is notified about the event which causes the system suspend in
+progress to be aborted (that doesn't have to happen immediately, but at one
+of the points where the suspend thread looks for pending wakeup events).
+
+This way every interrupt from a wakeup interrupt source will either cause the
+system suspend currently in progress to be aborted or wake up the system if
+already suspended.  However, after suspend_device_irqs() interrupt handlers are
+not executed for system wakeup IRQs.  They are only executed for IRQF_NO_SUSPEND
+IRQs at that time, but those IRQs should not be configured for system wakeup
+using enable_irq_wake().
+
+
+Interrupts and Suspend-to-Idle
+------------------------------
+
+Suspend-to-idle (also known as the "freeze" sleep state) is a relatively new
+system sleep state that works by idling all of the processors and waiting for
+interrupts right after the "noirq" phase of suspending devices.
+
+Of course, this means that all of the interrupts with the IRQF_NO_SUSPEND flag
+set will bring CPUs out of idle while in that state, but they will not cause the
+IRQ subsystem to trigger a system wakeup.
+
+System wakeup interrupts, in turn, will trigger wakeup from suspend-to-idle in
+analogy with what they do in the full system suspend case.  The only difference
+is that the wakeup from suspend-to-idle is signaled using the usual working
+state interrupt delivery mechanisms and doesn't require the platform to use
+any special interrupt handling logic for it to work.
+
+
+IRQF_NO_SUSPEND and enable_irq_wake()
+-------------------------------------
+
+There are very few valid reasons to use both enable_irq_wake() and the
+IRQF_NO_SUSPEND flag on the same IRQ, and it is never valid to use both for the
+same device.
+
+First of all, if the IRQ is not shared, the rules for handling IRQF_NO_SUSPEND
+interrupts (interrupt handlers are invoked after suspend_device_irqs()) are
+directly at odds with the rules for handling system wakeup interrupts (interrupt
+handlers are not invoked after suspend_device_irqs()).
+
+Second, both enable_irq_wake() and IRQF_NO_SUSPEND apply to entire IRQs and not
+to individual interrupt handlers, so sharing an IRQ between a system wakeup
+interrupt source and an IRQF_NO_SUSPEND interrupt source does not generally
+make sense.
+
+In rare cases an IRQ can be shared between a wakeup device driver and an
+IRQF_NO_SUSPEND user. In order for this to be safe, the wakeup device driver
+must be able to discern spurious IRQs from genuine wakeup events (signalling
+the latter to the core with pm_system_wakeup()), must use enable_irq_wake() to
+ensure that the IRQ will function as a wakeup source, and must request the IRQ
+with IRQF_COND_SUSPEND to tell the core that it meets these requirements. If
+these requirements are not met, it is not valid to use IRQF_COND_SUSPEND.
diff --git a/Documentation/power/suspend-and-interrupts.txt b/Documentation/power/suspend-and-interrupts.txt
deleted file mode 100644 (file)
index 8afb29a..0000000
+++ /dev/null
@@ -1,135 +0,0 @@
-System Suspend and Device Interrupts
-
-Copyright (C) 2014 Intel Corp.
-Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
-
-
-Suspending and Resuming Device IRQs
------------------------------------
-
-Device interrupt request lines (IRQs) are generally disabled during system
-suspend after the "late" phase of suspending devices (that is, after all of the
-->prepare, ->suspend and ->suspend_late callbacks have been executed for all
-devices).  That is done by suspend_device_irqs().
-
-The rationale for doing so is that after the "late" phase of device suspend
-there is no legitimate reason why any interrupts from suspended devices should
-trigger and if any devices have not been suspended properly yet, it is better to
-block interrupts from them anyway.  Also, in the past we had problems with
-interrupt handlers for shared IRQs that device drivers implementing them were
-not prepared for interrupts triggering after their devices had been suspended.
-In some cases they would attempt to access, for example, memory address spaces
-of suspended devices and cause unpredictable behavior to ensue as a result.
-Unfortunately, such problems are very difficult to debug and the introduction
-of suspend_device_irqs(), along with the "noirq" phase of device suspend and
-resume, was the only practical way to mitigate them.
-
-Device IRQs are re-enabled during system resume, right before the "early" phase
-of resuming devices (that is, before starting to execute ->resume_early
-callbacks for devices).  The function doing that is resume_device_irqs().
-
-
-The IRQF_NO_SUSPEND Flag
-------------------------
-
-There are interrupts that can legitimately trigger during the entire system
-suspend-resume cycle, including the "noirq" phases of suspending and resuming
-devices as well as during the time when nonboot CPUs are taken offline and
-brought back online.  That applies to timer interrupts in the first place,
-but also to IPIs and to some other special-purpose interrupts.
-
-The IRQF_NO_SUSPEND flag is used to indicate that to the IRQ subsystem when
-requesting a special-purpose interrupt.  It causes suspend_device_irqs() to
-leave the corresponding IRQ enabled so as to allow the interrupt to work as
-expected during the suspend-resume cycle, but does not guarantee that the
-interrupt will wake the system from a suspended state -- for such cases it is
-necessary to use enable_irq_wake().
-
-Note that the IRQF_NO_SUSPEND flag affects the entire IRQ and not just one
-user of it.  Thus, if the IRQ is shared, all of the interrupt handlers installed
-for it will be executed as usual after suspend_device_irqs(), even if the
-IRQF_NO_SUSPEND flag was not passed to request_irq() (or equivalent) by some of
-the IRQ's users.  For this reason, using IRQF_NO_SUSPEND and IRQF_SHARED at the
-same time should be avoided.
-
-
-System Wakeup Interrupts, enable_irq_wake() and disable_irq_wake()
-------------------------------------------------------------------
-
-System wakeup interrupts generally need to be configured to wake up the system
-from sleep states, especially if they are used for different purposes (e.g. as
-I/O interrupts) in the working state.
-
-That may involve turning on a special signal handling logic within the platform
-(such as an SoC) so that signals from a given line are routed in a different way
-during system sleep so as to trigger a system wakeup when needed.  For example,
-the platform may include a dedicated interrupt controller used specifically for
-handling system wakeup events.  Then, if a given interrupt line is supposed to
-wake up the system from sleep sates, the corresponding input of that interrupt
-controller needs to be enabled to receive signals from the line in question.
-After wakeup, it generally is better to disable that input to prevent the
-dedicated controller from triggering interrupts unnecessarily.
-
-The IRQ subsystem provides two helper functions to be used by device drivers for
-those purposes.  Namely, enable_irq_wake() turns on the platform's logic for
-handling the given IRQ as a system wakeup interrupt line and disable_irq_wake()
-turns that logic off.
-
-Calling enable_irq_wake() causes suspend_device_irqs() to treat the given IRQ
-in a special way.  Namely, the IRQ remains enabled, by on the first interrupt
-it will be disabled, marked as pending and "suspended" so that it will be
-re-enabled by resume_device_irqs() during the subsequent system resume.  Also
-the PM core is notified about the event which causes the system suspend in
-progress to be aborted (that doesn't have to happen immediately, but at one
-of the points where the suspend thread looks for pending wakeup events).
-
-This way every interrupt from a wakeup interrupt source will either cause the
-system suspend currently in progress to be aborted or wake up the system if
-already suspended.  However, after suspend_device_irqs() interrupt handlers are
-not executed for system wakeup IRQs.  They are only executed for IRQF_NO_SUSPEND
-IRQs at that time, but those IRQs should not be configured for system wakeup
-using enable_irq_wake().
-
-
-Interrupts and Suspend-to-Idle
-------------------------------
-
-Suspend-to-idle (also known as the "freeze" sleep state) is a relatively new
-system sleep state that works by idling all of the processors and waiting for
-interrupts right after the "noirq" phase of suspending devices.
-
-Of course, this means that all of the interrupts with the IRQF_NO_SUSPEND flag
-set will bring CPUs out of idle while in that state, but they will not cause the
-IRQ subsystem to trigger a system wakeup.
-
-System wakeup interrupts, in turn, will trigger wakeup from suspend-to-idle in
-analogy with what they do in the full system suspend case.  The only difference
-is that the wakeup from suspend-to-idle is signaled using the usual working
-state interrupt delivery mechanisms and doesn't require the platform to use
-any special interrupt handling logic for it to work.
-
-
-IRQF_NO_SUSPEND and enable_irq_wake()
--------------------------------------
-
-There are very few valid reasons to use both enable_irq_wake() and the
-IRQF_NO_SUSPEND flag on the same IRQ, and it is never valid to use both for the
-same device.
-
-First of all, if the IRQ is not shared, the rules for handling IRQF_NO_SUSPEND
-interrupts (interrupt handlers are invoked after suspend_device_irqs()) are
-directly at odds with the rules for handling system wakeup interrupts (interrupt
-handlers are not invoked after suspend_device_irqs()).
-
-Second, both enable_irq_wake() and IRQF_NO_SUSPEND apply to entire IRQs and not
-to individual interrupt handlers, so sharing an IRQ between a system wakeup
-interrupt source and an IRQF_NO_SUSPEND interrupt source does not generally
-make sense.
-
-In rare cases an IRQ can be shared between a wakeup device driver and an
-IRQF_NO_SUSPEND user. In order for this to be safe, the wakeup device driver
-must be able to discern spurious IRQs from genuine wakeup events (signalling
-the latter to the core with pm_system_wakeup()), must use enable_irq_wake() to
-ensure that the IRQ will function as a wakeup source, and must request the IRQ
-with IRQF_COND_SUSPEND to tell the core that it meets these requirements. If
-these requirements are not met, it is not valid to use IRQF_COND_SUSPEND.
diff --git a/Documentation/power/swsusp-and-swap-files.rst b/Documentation/power/swsusp-and-swap-files.rst
new file mode 100644 (file)
index 0000000..a33a291
--- /dev/null
@@ -0,0 +1,63 @@
+===============================================
+Using swap files with software suspend (swsusp)
+===============================================
+
+       (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
+
+The Linux kernel handles swap files almost in the same way as it handles swap
+partitions and there are only two differences between these two types of swap
+areas:
+(1) swap files need not be contiguous,
+(2) the header of a swap file is not in the first block of the partition that
+holds it.  From the swsusp's point of view (1) is not a problem, because it is
+already taken care of by the swap-handling code, but (2) has to be taken into
+consideration.
+
+In principle the location of a swap file's header may be determined with the
+help of appropriate filesystem driver.  Unfortunately, however, it requires the
+filesystem holding the swap file to be mounted, and if this filesystem is
+journaled, it cannot be mounted during resume from disk.  For this reason to
+identify a swap file swsusp uses the name of the partition that holds the file
+and the offset from the beginning of the partition at which the swap file's
+header is located.  For convenience, this offset is expressed in <PAGE_SIZE>
+units.
+
+In order to use a swap file with swsusp, you need to:
+
+1) Create the swap file and make it active, eg.::
+
+    # dd if=/dev/zero of=<swap_file_path> bs=1024 count=<swap_file_size_in_k>
+    # mkswap <swap_file_path>
+    # swapon <swap_file_path>
+
+2) Use an application that will bmap the swap file with the help of the
+FIBMAP ioctl and determine the location of the file's swap header, as the
+offset, in <PAGE_SIZE> units, from the beginning of the partition which
+holds the swap file.
+
+3) Add the following parameters to the kernel command line::
+
+    resume=<swap_file_partition> resume_offset=<swap_file_offset>
+
+where <swap_file_partition> is the partition on which the swap file is located
+and <swap_file_offset> is the offset of the swap header determined by the
+application in 2) (of course, this step may be carried out automatically
+by the same application that determines the swap file's header offset using the
+FIBMAP ioctl)
+
+OR
+
+Use a userland suspend application that will set the partition and offset
+with the help of the SNAPSHOT_SET_SWAP_AREA ioctl described in
+Documentation/power/userland-swsusp.rst (this is the only method to suspend
+to a swap file allowing the resume to be initiated from an initrd or initramfs
+image).
+
+Now, swsusp will use the swap file in the same way in which it would use a swap
+partition.  In particular, the swap file has to be active (ie. be present in
+/proc/swaps) so that it can be used for suspending.
+
+Note that if the swap file used for suspending is deleted and recreated,
+the location of its header need not be the same as before.  Thus every time
+this happens the value of the "resume_offset=" kernel command line parameter
+has to be updated.
diff --git a/Documentation/power/swsusp-and-swap-files.txt b/Documentation/power/swsusp-and-swap-files.txt
deleted file mode 100644 (file)
index f281886..0000000
+++ /dev/null
@@ -1,60 +0,0 @@
-Using swap files with software suspend (swsusp)
-       (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
-
-The Linux kernel handles swap files almost in the same way as it handles swap
-partitions and there are only two differences between these two types of swap
-areas:
-(1) swap files need not be contiguous,
-(2) the header of a swap file is not in the first block of the partition that
-holds it.  From the swsusp's point of view (1) is not a problem, because it is
-already taken care of by the swap-handling code, but (2) has to be taken into
-consideration.
-
-In principle the location of a swap file's header may be determined with the
-help of appropriate filesystem driver.  Unfortunately, however, it requires the
-filesystem holding the swap file to be mounted, and if this filesystem is
-journaled, it cannot be mounted during resume from disk.  For this reason to
-identify a swap file swsusp uses the name of the partition that holds the file
-and the offset from the beginning of the partition at which the swap file's
-header is located.  For convenience, this offset is expressed in <PAGE_SIZE>
-units.
-
-In order to use a swap file with swsusp, you need to:
-
-1) Create the swap file and make it active, eg.
-
-# dd if=/dev/zero of=<swap_file_path> bs=1024 count=<swap_file_size_in_k>
-# mkswap <swap_file_path>
-# swapon <swap_file_path>
-
-2) Use an application that will bmap the swap file with the help of the
-FIBMAP ioctl and determine the location of the file's swap header, as the
-offset, in <PAGE_SIZE> units, from the beginning of the partition which
-holds the swap file.
-
-3) Add the following parameters to the kernel command line:
-
-resume=<swap_file_partition> resume_offset=<swap_file_offset>
-
-where <swap_file_partition> is the partition on which the swap file is located
-and <swap_file_offset> is the offset of the swap header determined by the
-application in 2) (of course, this step may be carried out automatically
-by the same application that determines the swap file's header offset using the
-FIBMAP ioctl)
-
-OR
-
-Use a userland suspend application that will set the partition and offset
-with the help of the SNAPSHOT_SET_SWAP_AREA ioctl described in
-Documentation/power/userland-swsusp.txt (this is the only method to suspend
-to a swap file allowing the resume to be initiated from an initrd or initramfs
-image).
-
-Now, swsusp will use the swap file in the same way in which it would use a swap
-partition.  In particular, the swap file has to be active (ie. be present in
-/proc/swaps) so that it can be used for suspending.
-
-Note that if the swap file used for suspending is deleted and recreated,
-the location of its header need not be the same as before.  Thus every time
-this happens the value of the "resume_offset=" kernel command line parameter
-has to be updated.
diff --git a/Documentation/power/swsusp-dmcrypt.rst b/Documentation/power/swsusp-dmcrypt.rst
new file mode 100644 (file)
index 0000000..426df59
--- /dev/null
@@ -0,0 +1,140 @@
+=======================================
+How to use dm-crypt and swsusp together
+=======================================
+
+Author: Andreas Steinmetz <ast@domdv.de>
+
+
+
+Some prerequisites:
+You know how dm-crypt works. If not, visit the following web page:
+http://www.saout.de/misc/dm-crypt/
+You have read Documentation/power/swsusp.rst and understand it.
+You did read Documentation/admin-guide/initrd.rst and know how an initrd works.
+You know how to create or how to modify an initrd.
+
+Now your system is properly set up, your disk is encrypted except for
+the swap device(s) and the boot partition which may contain a mini
+system for crypto setup and/or rescue purposes. You may even have
+an initrd that does your current crypto setup already.
+
+At this point you want to encrypt your swap, too. Still you want to
+be able to suspend using swsusp. This, however, means that you
+have to be able to either enter a passphrase or that you read
+the key(s) from an external device like a pcmcia flash disk
+or an usb stick prior to resume. So you need an initrd, that sets
+up dm-crypt and then asks swsusp to resume from the encrypted
+swap device.
+
+The most important thing is that you set up dm-crypt in such
+a way that the swap device you suspend to/resume from has
+always the same major/minor within the initrd as well as
+within your running system. The easiest way to achieve this is
+to always set up this swap device first with dmsetup, so that
+it will always look like the following::
+
+  brw-------  1 root root 254, 0 Jul 28 13:37 /dev/mapper/swap0
+
+Now set up your kernel to use /dev/mapper/swap0 as the default
+resume partition, so your kernel .config contains::
+
+  CONFIG_PM_STD_PARTITION="/dev/mapper/swap0"
+
+Prepare your boot loader to use the initrd you will create or
+modify. For lilo the simplest setup looks like the following
+lines::
+
+  image=/boot/vmlinuz
+  initrd=/boot/initrd.gz
+  label=linux
+  append="root=/dev/ram0 init=/linuxrc rw"
+
+Finally you need to create or modify your initrd. Lets assume
+you create an initrd that reads the required dm-crypt setup
+from a pcmcia flash disk card. The card is formatted with an ext2
+fs which resides on /dev/hde1 when the card is inserted. The
+card contains at least the encrypted swap setup in a file
+named "swapkey". /etc/fstab of your initrd contains something
+like the following::
+
+  /dev/hda1   /mnt    ext3      ro                            0 0
+  none        /proc   proc      defaults,noatime,nodiratime   0 0
+  none        /sys    sysfs     defaults,noatime,nodiratime   0 0
+
+/dev/hda1 contains an unencrypted mini system that sets up all
+of your crypto devices, again by reading the setup from the
+pcmcia flash disk. What follows now is a /linuxrc for your
+initrd that allows you to resume from encrypted swap and that
+continues boot with your mini system on /dev/hda1 if resume
+does not happen::
+
+  #!/bin/sh
+  PATH=/sbin:/bin:/usr/sbin:/usr/bin
+  mount /proc
+  mount /sys
+  mapped=0
+  noresume=`grep -c noresume /proc/cmdline`
+  if [ "$*" != "" ]
+  then
+    noresume=1
+  fi
+  dmesg -n 1
+  /sbin/cardmgr -q
+  for i in 1 2 3 4 5 6 7 8 9 0
+  do
+    if [ -f /proc/ide/hde/media ]
+    then
+      usleep 500000
+      mount -t ext2 -o ro /dev/hde1 /mnt
+      if [ -f /mnt/swapkey ]
+      then
+        dmsetup create swap0 /mnt/swapkey > /dev/null 2>&1 && mapped=1
+      fi
+      umount /mnt
+      break
+    fi
+    usleep 500000
+  done
+  killproc /sbin/cardmgr
+  dmesg -n 6
+  if [ $mapped = 1 ]
+  then
+    if [ $noresume != 0 ]
+    then
+      mkswap /dev/mapper/swap0 > /dev/null 2>&1
+    fi
+    echo 254:0 > /sys/power/resume
+    dmsetup remove swap0
+  fi
+  umount /sys
+  mount /mnt
+  umount /proc
+  cd /mnt
+  pivot_root . mnt
+  mount /proc
+  umount -l /mnt
+  umount /proc
+  exec chroot . /sbin/init $* < dev/console > dev/console 2>&1
+
+Please don't mind the weird loop above, busybox's msh doesn't know
+the let statement. Now, what is happening in the script?
+First we have to decide if we want to try to resume, or not.
+We will not resume if booting with "noresume" or any parameters
+for init like "single" or "emergency" as boot parameters.
+
+Then we need to set up dmcrypt with the setup data from the
+pcmcia flash disk. If this succeeds we need to reset the swap
+device if we don't want to resume. The line "echo 254:0 > /sys/power/resume"
+then attempts to resume from the first device mapper device.
+Note that it is important to set the device in /sys/power/resume,
+regardless if resuming or not, otherwise later suspend will fail.
+If resume starts, script execution terminates here.
+
+Otherwise we just remove the encrypted swap device and leave it to the
+mini system on /dev/hda1 to set the whole crypto up (it is up to
+you to modify this to your taste).
+
+What then follows is the well known process to change the root
+file system and continue booting from there. I prefer to unmount
+the initrd prior to continue booting but it is up to you to modify
+this.
diff --git a/Documentation/power/swsusp-dmcrypt.txt b/Documentation/power/swsusp-dmcrypt.txt
deleted file mode 100644 (file)
index b802fbf..0000000
+++ /dev/null
@@ -1,138 +0,0 @@
-Author: Andreas Steinmetz <ast@domdv.de>
-
-
-How to use dm-crypt and swsusp together:
-========================================
-
-Some prerequisites:
-You know how dm-crypt works. If not, visit the following web page:
-http://www.saout.de/misc/dm-crypt/
-You have read Documentation/power/swsusp.txt and understand it.
-You did read Documentation/admin-guide/initrd.rst and know how an initrd works.
-You know how to create or how to modify an initrd.
-
-Now your system is properly set up, your disk is encrypted except for
-the swap device(s) and the boot partition which may contain a mini
-system for crypto setup and/or rescue purposes. You may even have
-an initrd that does your current crypto setup already.
-
-At this point you want to encrypt your swap, too. Still you want to
-be able to suspend using swsusp. This, however, means that you
-have to be able to either enter a passphrase or that you read
-the key(s) from an external device like a pcmcia flash disk
-or an usb stick prior to resume. So you need an initrd, that sets
-up dm-crypt and then asks swsusp to resume from the encrypted
-swap device.
-
-The most important thing is that you set up dm-crypt in such
-a way that the swap device you suspend to/resume from has
-always the same major/minor within the initrd as well as
-within your running system. The easiest way to achieve this is
-to always set up this swap device first with dmsetup, so that
-it will always look like the following:
-
-brw-------  1 root root 254, 0 Jul 28 13:37 /dev/mapper/swap0
-
-Now set up your kernel to use /dev/mapper/swap0 as the default
-resume partition, so your kernel .config contains:
-
-CONFIG_PM_STD_PARTITION="/dev/mapper/swap0"
-
-Prepare your boot loader to use the initrd you will create or
-modify. For lilo the simplest setup looks like the following
-lines:
-
-image=/boot/vmlinuz
-initrd=/boot/initrd.gz
-label=linux
-append="root=/dev/ram0 init=/linuxrc rw"
-
-Finally you need to create or modify your initrd. Lets assume
-you create an initrd that reads the required dm-crypt setup
-from a pcmcia flash disk card. The card is formatted with an ext2
-fs which resides on /dev/hde1 when the card is inserted. The
-card contains at least the encrypted swap setup in a file
-named "swapkey". /etc/fstab of your initrd contains something
-like the following:
-
-/dev/hda1   /mnt    ext3      ro                            0 0
-none        /proc   proc      defaults,noatime,nodiratime   0 0
-none        /sys    sysfs     defaults,noatime,nodiratime   0 0
-
-/dev/hda1 contains an unencrypted mini system that sets up all
-of your crypto devices, again by reading the setup from the
-pcmcia flash disk. What follows now is a /linuxrc for your
-initrd that allows you to resume from encrypted swap and that
-continues boot with your mini system on /dev/hda1 if resume
-does not happen:
-
-#!/bin/sh
-PATH=/sbin:/bin:/usr/sbin:/usr/bin
-mount /proc
-mount /sys
-mapped=0
-noresume=`grep -c noresume /proc/cmdline`
-if [ "$*" != "" ]
-then
-  noresume=1
-fi
-dmesg -n 1
-/sbin/cardmgr -q
-for i in 1 2 3 4 5 6 7 8 9 0
-do
-  if [ -f /proc/ide/hde/media ]
-  then
-    usleep 500000
-    mount -t ext2 -o ro /dev/hde1 /mnt
-    if [ -f /mnt/swapkey ]
-    then
-      dmsetup create swap0 /mnt/swapkey > /dev/null 2>&1 && mapped=1
-    fi
-    umount /mnt
-    break
-  fi
-  usleep 500000
-done
-killproc /sbin/cardmgr
-dmesg -n 6
-if [ $mapped = 1 ]
-then
-  if [ $noresume != 0 ]
-  then
-    mkswap /dev/mapper/swap0 > /dev/null 2>&1
-  fi
-  echo 254:0 > /sys/power/resume
-  dmsetup remove swap0
-fi
-umount /sys
-mount /mnt
-umount /proc
-cd /mnt
-pivot_root . mnt
-mount /proc
-umount -l /mnt
-umount /proc
-exec chroot . /sbin/init $* < dev/console > dev/console 2>&1
-
-Please don't mind the weird loop above, busybox's msh doesn't know
-the let statement. Now, what is happening in the script?
-First we have to decide if we want to try to resume, or not.
-We will not resume if booting with "noresume" or any parameters
-for init like "single" or "emergency" as boot parameters.
-
-Then we need to set up dmcrypt with the setup data from the
-pcmcia flash disk. If this succeeds we need to reset the swap
-device if we don't want to resume. The line "echo 254:0 > /sys/power/resume"
-then attempts to resume from the first device mapper device.
-Note that it is important to set the device in /sys/power/resume,
-regardless if resuming or not, otherwise later suspend will fail.
-If resume starts, script execution terminates here.
-
-Otherwise we just remove the encrypted swap device and leave it to the
-mini system on /dev/hda1 to set the whole crypto up (it is up to
-you to modify this to your taste).
-
-What then follows is the well known process to change the root
-file system and continue booting from there. I prefer to unmount
-the initrd prior to continue booting but it is up to you to modify
-this.
diff --git a/Documentation/power/swsusp.rst b/Documentation/power/swsusp.rst
new file mode 100644 (file)
index 0000000..d000312
--- /dev/null
@@ -0,0 +1,501 @@
+============
+Swap suspend
+============
+
+Some warnings, first.
+
+.. warning::
+
+   **BIG FAT WARNING**
+
+   If you touch anything on disk between suspend and resume...
+                               ...kiss your data goodbye.
+
+   If you do resume from initrd after your filesystems are mounted...
+                               ...bye bye root partition.
+
+                       [this is actually same case as above]
+
+   If you have unsupported ( ) devices using DMA, you may have some
+   problems. If your disk driver does not support suspend... (IDE does),
+   it may cause some problems, too. If you change kernel command line
+   between suspend and resume, it may do something wrong. If you change
+   your hardware while system is suspended... well, it was not good idea;
+   but it will probably only crash.
+
+   ( ) suspend/resume support is needed to make it safe.
+
+   If you have any filesystems on USB devices mounted before software suspend,
+   they won't be accessible after resume and you may lose data, as though
+   you have unplugged the USB devices with mounted filesystems on them;
+   see the FAQ below for details.  (This is not true for more traditional
+   power states like "standby", which normally don't turn USB off.)
+
+Swap partition:
+  You need to append resume=/dev/your_swap_partition to kernel command
+  line or specify it using /sys/power/resume.
+
+Swap file:
+  If using a swapfile you can also specify a resume offset using
+  resume_offset=<number> on the kernel command line or specify it
+  in /sys/power/resume_offset.
+
+After preparing then you suspend by::
+
+       echo shutdown > /sys/power/disk; echo disk > /sys/power/state
+
+- If you feel ACPI works pretty well on your system, you might try::
+
+       echo platform > /sys/power/disk; echo disk > /sys/power/state
+
+- If you would like to write hibernation image to swap and then suspend
+  to RAM (provided your platform supports it), you can try::
+
+       echo suspend > /sys/power/disk; echo disk > /sys/power/state
+
+- If you have SATA disks, you'll need recent kernels with SATA suspend
+  support. For suspend and resume to work, make sure your disk drivers
+  are built into kernel -- not modules. [There's way to make
+  suspend/resume with modular disk drivers, see FAQ, but you probably
+  should not do that.]
+
+If you want to limit the suspend image size to N bytes, do::
+
+       echo N > /sys/power/image_size
+
+before suspend (it is limited to around 2/5 of available RAM by default).
+
+- The resume process checks for the presence of the resume device,
+  if found, it then checks the contents for the hibernation image signature.
+  If both are found, it resumes the hibernation image.
+
+- The resume process may be triggered in two ways:
+
+  1) During lateinit:  If resume=/dev/your_swap_partition is specified on
+     the kernel command line, lateinit runs the resume process.  If the
+     resume device has not been probed yet, the resume process fails and
+     bootup continues.
+  2) Manually from an initrd or initramfs:  May be run from
+     the init script by using the /sys/power/resume file.  It is vital
+     that this be done prior to remounting any filesystems (even as
+     read-only) otherwise data may be corrupted.
+
+Article about goals and implementation of Software Suspend for Linux
+====================================================================
+
+Author: Gábor Kuti
+Last revised: 2003-10-20 by Pavel Machek
+
+Idea and goals to achieve
+-------------------------
+
+Nowadays it is common in several laptops that they have a suspend button. It
+saves the state of the machine to a filesystem or to a partition and switches
+to standby mode. Later resuming the machine the saved state is loaded back to
+ram and the machine can continue its work. It has two real benefits. First we
+save ourselves the time machine goes down and later boots up, energy costs
+are real high when running from batteries. The other gain is that we don't have
+to interrupt our programs so processes that are calculating something for a long
+time shouldn't need to be written interruptible.
+
+swsusp saves the state of the machine into active swaps and then reboots or
+powerdowns.  You must explicitly specify the swap partition to resume from with
+`resume=` kernel option. If signature is found it loads and restores saved
+state. If the option `noresume` is specified as a boot parameter, it skips
+the resuming.  If the option `hibernate=nocompress` is specified as a boot
+parameter, it saves hibernation image without compression.
+
+In the meantime while the system is suspended you should not add/remove any
+of the hardware, write to the filesystems, etc.
+
+Sleep states summary
+====================
+
+There are three different interfaces you can use, /proc/acpi should
+work like this:
+
+In a really perfect world::
+
+  echo 1 > /proc/acpi/sleep       # for standby
+  echo 2 > /proc/acpi/sleep       # for suspend to ram
+  echo 3 > /proc/acpi/sleep       # for suspend to ram, but with more power conservative
+  echo 4 > /proc/acpi/sleep       # for suspend to disk
+  echo 5 > /proc/acpi/sleep       # for shutdown unfriendly the system
+
+and perhaps::
+
+  echo 4b > /proc/acpi/sleep      # for suspend to disk via s4bios
+
+Frequently Asked Questions
+==========================
+
+Q:
+  well, suspending a server is IMHO a really stupid thing,
+  but... (Diego Zuccato):
+
+A:
+  You bought new UPS for your server. How do you install it without
+  bringing machine down? Suspend to disk, rearrange power cables,
+  resume.
+
+  You have your server on UPS. Power died, and UPS is indicating 30
+  seconds to failure. What do you do? Suspend to disk.
+
+
+Q:
+  Maybe I'm missing something, but why don't the regular I/O paths work?
+
+A:
+  We do use the regular I/O paths. However we cannot restore the data
+  to its original location as we load it. That would create an
+  inconsistent kernel state which would certainly result in an oops.
+  Instead, we load the image into unused memory and then atomically copy
+  it back to it original location. This implies, of course, a maximum
+  image size of half the amount of memory.
+
+  There are two solutions to this:
+
+  * require half of memory to be free during suspend. That way you can
+    read "new" data onto free spots, then cli and copy
+
+  * assume we had special "polling" ide driver that only uses memory
+    between 0-640KB. That way, I'd have to make sure that 0-640KB is free
+    during suspending, but otherwise it would work...
+
+  suspend2 shares this fundamental limitation, but does not include user
+  data and disk caches into "used memory" by saving them in
+  advance. That means that the limitation goes away in practice.
+
+Q:
+  Does linux support ACPI S4?
+
+A:
+  Yes. That's what echo platform > /sys/power/disk does.
+
+Q:
+  What is 'suspend2'?
+
+A:
+  suspend2 is 'Software Suspend 2', a forked implementation of
+  suspend-to-disk which is available as separate patches for 2.4 and 2.6
+  kernels from swsusp.sourceforge.net. It includes support for SMP, 4GB
+  highmem and preemption. It also has a extensible architecture that
+  allows for arbitrary transformations on the image (compression,
+  encryption) and arbitrary backends for writing the image (eg to swap
+  or an NFS share[Work In Progress]). Questions regarding suspend2
+  should be sent to the mailing list available through the suspend2
+  website, and not to the Linux Kernel Mailing List. We are working
+  toward merging suspend2 into the mainline kernel.
+
+Q:
+  What is the freezing of tasks and why are we using it?
+
+A:
+  The freezing of tasks is a mechanism by which user space processes and some
+  kernel threads are controlled during hibernation or system-wide suspend (on some
+  architectures).  See freezing-of-tasks.txt for details.
+
+Q:
+  What is the difference between "platform" and "shutdown"?
+
+A:
+  shutdown:
+       save state in linux, then tell bios to powerdown
+
+  platform:
+       save state in linux, then tell bios to powerdown and blink
+        "suspended led"
+
+  "platform" is actually right thing to do where supported, but
+  "shutdown" is most reliable (except on ACPI systems).
+
+Q:
+  I do not understand why you have such strong objections to idea of
+  selective suspend.
+
+A:
+  Do selective suspend during runtime power management, that's okay. But
+  it's useless for suspend-to-disk. (And I do not see how you could use
+  it for suspend-to-ram, I hope you do not want that).
+
+  Lets see, so you suggest to
+
+  * SUSPEND all but swap device and parents
+  * Snapshot
+  * Write image to disk
+  * SUSPEND swap device and parents
+  * Powerdown
+
+  Oh no, that does not work, if swap device or its parents uses DMA,
+  you've corrupted data. You'd have to do
+
+  * SUSPEND all but swap device and parents
+  * FREEZE swap device and parents
+  * Snapshot
+  * UNFREEZE swap device and parents
+  * Write
+  * SUSPEND swap device and parents
+
+  Which means that you still need that FREEZE state, and you get more
+  complicated code. (And I have not yet introduce details like system
+  devices).
+
+Q:
+  There don't seem to be any generally useful behavioral
+  distinctions between SUSPEND and FREEZE.
+
+A:
+  Doing SUSPEND when you are asked to do FREEZE is always correct,
+  but it may be unnecessarily slow. If you want your driver to stay simple,
+  slowness may not matter to you. It can always be fixed later.
+
+  For devices like disk it does matter, you do not want to spindown for
+  FREEZE.
+
+Q:
+  After resuming, system is paging heavily, leading to very bad interactivity.
+
+A:
+  Try running::
+
+    cat /proc/[0-9]*/maps | grep / | sed 's:.* /:/:' | sort -u | while read file
+    do
+      test -f "$file" && cat "$file" > /dev/null
+    done
+
+  after resume. swapoff -a; swapon -a may also be useful.
+
+Q:
+  What happens to devices during swsusp? They seem to be resumed
+  during system suspend?
+
+A:
+  That's correct. We need to resume them if we want to write image to
+  disk. Whole sequence goes like
+
+      **Suspend part**
+
+      running system, user asks for suspend-to-disk
+
+      user processes are stopped
+
+      suspend(PMSG_FREEZE): devices are frozen so that they don't interfere
+      with state snapshot
+
+      state snapshot: copy of whole used memory is taken with interrupts disabled
+
+      resume(): devices are woken up so that we can write image to swap
+
+      write image to swap
+
+      suspend(PMSG_SUSPEND): suspend devices so that we can power off
+
+      turn the power off
+
+      **Resume part**
+
+      (is actually pretty similar)
+
+      running system, user asks for suspend-to-disk
+
+      user processes are stopped (in common case there are none,
+      but with resume-from-initrd, no one knows)
+
+      read image from disk
+
+      suspend(PMSG_FREEZE): devices are frozen so that they don't interfere
+      with image restoration
+
+      image restoration: rewrite memory with image
+
+      resume(): devices are woken up so that system can continue
+
+      thaw all user processes
+
+Q:
+  What is this 'Encrypt suspend image' for?
+
+A:
+  First of all: it is not a replacement for dm-crypt encrypted swap.
+  It cannot protect your computer while it is suspended. Instead it does
+  protect from leaking sensitive data after resume from suspend.
+
+  Think of the following: you suspend while an application is running
+  that keeps sensitive data in memory. The application itself prevents
+  the data from being swapped out. Suspend, however, must write these
+  data to swap to be able to resume later on. Without suspend encryption
+  your sensitive data are then stored in plaintext on disk.  This means
+  that after resume your sensitive data are accessible to all
+  applications having direct access to the swap device which was used
+  for suspend. If you don't need swap after resume these data can remain
+  on disk virtually forever. Thus it can happen that your system gets
+  broken in weeks later and sensitive data which you thought were
+  encrypted and protected are retrieved and stolen from the swap device.
+  To prevent this situation you should use 'Encrypt suspend image'.
+
+  During suspend a temporary key is created and this key is used to
+  encrypt the data written to disk. When, during resume, the data was
+  read back into memory the temporary key is destroyed which simply
+  means that all data written to disk during suspend are then
+  inaccessible so they can't be stolen later on.  The only thing that
+  you must then take care of is that you call 'mkswap' for the swap
+  partition used for suspend as early as possible during regular
+  boot. This asserts that any temporary key from an oopsed suspend or
+  from a failed or aborted resume is erased from the swap device.
+
+  As a rule of thumb use encrypted swap to protect your data while your
+  system is shut down or suspended. Additionally use the encrypted
+  suspend image to prevent sensitive data from being stolen after
+  resume.
+
+Q:
+  Can I suspend to a swap file?
+
+A:
+  Generally, yes, you can.  However, it requires you to use the "resume=" and
+  "resume_offset=" kernel command line parameters, so the resume from a swap file
+  cannot be initiated from an initrd or initramfs image.  See
+  swsusp-and-swap-files.txt for details.
+
+Q:
+  Is there a maximum system RAM size that is supported by swsusp?
+
+A:
+  It should work okay with highmem.
+
+Q:
+  Does swsusp (to disk) use only one swap partition or can it use
+  multiple swap partitions (aggregate them into one logical space)?
+
+A:
+  Only one swap partition, sorry.
+
+Q:
+  If my application(s) causes lots of memory & swap space to be used
+  (over half of the total system RAM), is it correct that it is likely
+  to be useless to try to suspend to disk while that app is running?
+
+A:
+  No, it should work okay, as long as your app does not mlock()
+  it. Just prepare big enough swap partition.
+
+Q:
+  What information is useful for debugging suspend-to-disk problems?
+
+A:
+  Well, last messages on the screen are always useful. If something
+  is broken, it is usually some kernel driver, therefore trying with as
+  little as possible modules loaded helps a lot. I also prefer people to
+  suspend from console, preferably without X running. Booting with
+  init=/bin/bash, then swapon and starting suspend sequence manually
+  usually does the trick. Then it is good idea to try with latest
+  vanilla kernel.
+
+Q:
+  How can distributions ship a swsusp-supporting kernel with modular
+  disk drivers (especially SATA)?
+
+A:
+  Well, it can be done, load the drivers, then do echo into
+  /sys/power/resume file from initrd. Be sure not to mount
+  anything, not even read-only mount, or you are going to lose your
+  data.
+
+Q:
+  How do I make suspend more verbose?
+
+A:
+  If you want to see any non-error kernel messages on the virtual
+  terminal the kernel switches to during suspend, you have to set the
+  kernel console loglevel to at least 4 (KERN_WARNING), for example by
+  doing::
+
+       # save the old loglevel
+       read LOGLEVEL DUMMY < /proc/sys/kernel/printk
+       # set the loglevel so we see the progress bar.
+       # if the level is higher than needed, we leave it alone.
+       if [ $LOGLEVEL -lt 5 ]; then
+               echo 5 > /proc/sys/kernel/printk
+               fi
+
+        IMG_SZ=0
+        read IMG_SZ < /sys/power/image_size
+        echo -n disk > /sys/power/state
+        RET=$?
+        #
+        # the logic here is:
+        # if image_size > 0 (without kernel support, IMG_SZ will be zero),
+        # then try again with image_size set to zero.
+       if [ $RET -ne 0 -a $IMG_SZ -ne 0 ]; then # try again with minimal image size
+                echo 0 > /sys/power/image_size
+                echo -n disk > /sys/power/state
+                RET=$?
+        fi
+
+       # restore previous loglevel
+       echo $LOGLEVEL > /proc/sys/kernel/printk
+       exit $RET
+
+Q:
+  Is this true that if I have a mounted filesystem on a USB device and
+  I suspend to disk, I can lose data unless the filesystem has been mounted
+  with "sync"?
+
+A:
+  That's right ... if you disconnect that device, you may lose data.
+  In fact, even with "-o sync" you can lose data if your programs have
+  information in buffers they haven't written out to a disk you disconnect,
+  or if you disconnect before the device finished saving data you wrote.
+
+  Software suspend normally powers down USB controllers, which is equivalent
+  to disconnecting all USB devices attached to your system.
+
+  Your system might well support low-power modes for its USB controllers
+  while the system is asleep, maintaining the connection, using true sleep
+  modes like "suspend-to-RAM" or "standby".  (Don't write "disk" to the
+  /sys/power/state file; write "standby" or "mem".)  We've not seen any
+  hardware that can use these modes through software suspend, although in
+  theory some systems might support "platform" modes that won't break the
+  USB connections.
+
+  Remember that it's always a bad idea to unplug a disk drive containing a
+  mounted filesystem.  That's true even when your system is asleep!  The
+  safest thing is to unmount all filesystems on removable media (such USB,
+  Firewire, CompactFlash, MMC, external SATA, or even IDE hotplug bays)
+  before suspending; then remount them after resuming.
+
+  There is a work-around for this problem.  For more information, see
+  Documentation/driver-api/usb/persist.rst.
+
+Q:
+  Can I suspend-to-disk using a swap partition under LVM?
+
+A:
+  Yes and No.  You can suspend successfully, but the kernel will not be able
+  to resume on its own.  You need an initramfs that can recognize the resume
+  situation, activate the logical volume containing the swap volume (but not
+  touch any filesystems!), and eventually call::
+
+    echo -n "$major:$minor" > /sys/power/resume
+
+  where $major and $minor are the respective major and minor device numbers of
+  the swap volume.
+
+  uswsusp works with LVM, too.  See http://suspend.sourceforge.net/
+
+Q:
+  I upgraded the kernel from 2.6.15 to 2.6.16. Both kernels were
+  compiled with the similar configuration files. Anyway I found that
+  suspend to disk (and resume) is much slower on 2.6.16 compared to
+  2.6.15. Any idea for why that might happen or how can I speed it up?
+
+A:
+  This is because the size of the suspend image is now greater than
+  for 2.6.15 (by saving more data we can get more responsive system
+  after resume).
+
+  There's the /sys/power/image_size knob that controls the size of the
+  image.  If you set it to 0 (eg. by echo 0 > /sys/power/image_size as
+  root), the 2.6.15 behavior should be restored.  If it is still too
+  slow, take a look at suspend.sf.net -- userland suspend is faster and
+  supports LZF compression to speed it up further.
diff --git a/Documentation/power/swsusp.txt b/Documentation/power/swsusp.txt
deleted file mode 100644 (file)
index 236d1fb..0000000
+++ /dev/null
@@ -1,446 +0,0 @@
-Some warnings, first.
-
- * BIG FAT WARNING *********************************************************
- *
- * If you touch anything on disk between suspend and resume...
- *                             ...kiss your data goodbye.
- *
- * If you do resume from initrd after your filesystems are mounted...
- *                             ...bye bye root partition.
- *                     [this is actually same case as above]
- *
- * If you have unsupported (*) devices using DMA, you may have some
- * problems. If your disk driver does not support suspend... (IDE does),
- * it may cause some problems, too. If you change kernel command line
- * between suspend and resume, it may do something wrong. If you change
- * your hardware while system is suspended... well, it was not good idea;
- * but it will probably only crash.
- *
- * (*) suspend/resume support is needed to make it safe.
- *
- * If you have any filesystems on USB devices mounted before software suspend,
- * they won't be accessible after resume and you may lose data, as though
- * you have unplugged the USB devices with mounted filesystems on them;
- * see the FAQ below for details.  (This is not true for more traditional
- * power states like "standby", which normally don't turn USB off.)
-
-Swap partition:
-You need to append resume=/dev/your_swap_partition to kernel command
-line or specify it using /sys/power/resume.
-
-Swap file:
-If using a swapfile you can also specify a resume offset using
-resume_offset=<number> on the kernel command line or specify it
-in /sys/power/resume_offset.
-
-After preparing then you suspend by
-
-echo shutdown > /sys/power/disk; echo disk > /sys/power/state
-
-. If you feel ACPI works pretty well on your system, you might try
-
-echo platform > /sys/power/disk; echo disk > /sys/power/state
-
-. If you would like to write hibernation image to swap and then suspend
-to RAM (provided your platform supports it), you can try
-
-echo suspend > /sys/power/disk; echo disk > /sys/power/state
-
-. If you have SATA disks, you'll need recent kernels with SATA suspend
-support. For suspend and resume to work, make sure your disk drivers
-are built into kernel -- not modules. [There's way to make
-suspend/resume with modular disk drivers, see FAQ, but you probably
-should not do that.]
-
-If you want to limit the suspend image size to N bytes, do
-
-echo N > /sys/power/image_size
-
-before suspend (it is limited to around 2/5 of available RAM by default).
-
-. The resume process checks for the presence of the resume device,
-if found, it then checks the contents for the hibernation image signature.
-If both are found, it resumes the hibernation image.
-
-. The resume process may be triggered in two ways:
-  1) During lateinit:  If resume=/dev/your_swap_partition is specified on
-     the kernel command line, lateinit runs the resume process.  If the
-     resume device has not been probed yet, the resume process fails and
-     bootup continues.
-  2) Manually from an initrd or initramfs:  May be run from
-     the init script by using the /sys/power/resume file.  It is vital
-     that this be done prior to remounting any filesystems (even as
-     read-only) otherwise data may be corrupted.
-
-Article about goals and implementation of Software Suspend for Linux
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Author: Gábor Kuti
-Last revised: 2003-10-20 by Pavel Machek
-
-Idea and goals to achieve
-
-Nowadays it is common in several laptops that they have a suspend button. It
-saves the state of the machine to a filesystem or to a partition and switches
-to standby mode. Later resuming the machine the saved state is loaded back to
-ram and the machine can continue its work. It has two real benefits. First we
-save ourselves the time machine goes down and later boots up, energy costs
-are real high when running from batteries. The other gain is that we don't have to
-interrupt our programs so processes that are calculating something for a long
-time shouldn't need to be written interruptible.
-
-swsusp saves the state of the machine into active swaps and then reboots or
-powerdowns.  You must explicitly specify the swap partition to resume from with
-``resume='' kernel option. If signature is found it loads and restores saved
-state. If the option ``noresume'' is specified as a boot parameter, it skips
-the resuming.  If the option ``hibernate=nocompress'' is specified as a boot
-parameter, it saves hibernation image without compression.
-
-In the meantime while the system is suspended you should not add/remove any
-of the hardware, write to the filesystems, etc.
-
-Sleep states summary
-====================
-
-There are three different interfaces you can use, /proc/acpi should
-work like this:
-
-In a really perfect world:
-echo 1 > /proc/acpi/sleep       # for standby
-echo 2 > /proc/acpi/sleep       # for suspend to ram
-echo 3 > /proc/acpi/sleep       # for suspend to ram, but with more power conservative
-echo 4 > /proc/acpi/sleep       # for suspend to disk
-echo 5 > /proc/acpi/sleep       # for shutdown unfriendly the system
-
-and perhaps
-echo 4b > /proc/acpi/sleep      # for suspend to disk via s4bios
-
-Frequently Asked Questions
-==========================
-
-Q: well, suspending a server is IMHO a really stupid thing,
-but... (Diego Zuccato):
-
-A: You bought new UPS for your server. How do you install it without
-bringing machine down? Suspend to disk, rearrange power cables,
-resume.
-
-You have your server on UPS. Power died, and UPS is indicating 30
-seconds to failure. What do you do? Suspend to disk.
-
-
-Q: Maybe I'm missing something, but why don't the regular I/O paths work?
-
-A: We do use the regular I/O paths. However we cannot restore the data
-to its original location as we load it. That would create an
-inconsistent kernel state which would certainly result in an oops.
-Instead, we load the image into unused memory and then atomically copy
-it back to it original location. This implies, of course, a maximum
-image size of half the amount of memory.
-
-There are two solutions to this:
-
-* require half of memory to be free during suspend. That way you can
-read "new" data onto free spots, then cli and copy
-
-* assume we had special "polling" ide driver that only uses memory
-between 0-640KB. That way, I'd have to make sure that 0-640KB is free
-during suspending, but otherwise it would work...
-
-suspend2 shares this fundamental limitation, but does not include user
-data and disk caches into "used memory" by saving them in
-advance. That means that the limitation goes away in practice.
-
-Q: Does linux support ACPI S4?
-
-A: Yes. That's what echo platform > /sys/power/disk does.
-
-Q: What is 'suspend2'?
-
-A: suspend2 is 'Software Suspend 2', a forked implementation of
-suspend-to-disk which is available as separate patches for 2.4 and 2.6
-kernels from swsusp.sourceforge.net. It includes support for SMP, 4GB
-highmem and preemption. It also has a extensible architecture that
-allows for arbitrary transformations on the image (compression,
-encryption) and arbitrary backends for writing the image (eg to swap
-or an NFS share[Work In Progress]). Questions regarding suspend2
-should be sent to the mailing list available through the suspend2
-website, and not to the Linux Kernel Mailing List. We are working
-toward merging suspend2 into the mainline kernel.
-
-Q: What is the freezing of tasks and why are we using it?
-
-A: The freezing of tasks is a mechanism by which user space processes and some
-kernel threads are controlled during hibernation or system-wide suspend (on some
-architectures).  See freezing-of-tasks.txt for details.
-
-Q: What is the difference between "platform" and "shutdown"?
-
-A:
-
-shutdown: save state in linux, then tell bios to powerdown
-
-platform: save state in linux, then tell bios to powerdown and blink
-          "suspended led"
-
-"platform" is actually right thing to do where supported, but
-"shutdown" is most reliable (except on ACPI systems).
-
-Q: I do not understand why you have such strong objections to idea of
-selective suspend.
-
-A: Do selective suspend during runtime power management, that's okay. But
-it's useless for suspend-to-disk. (And I do not see how you could use
-it for suspend-to-ram, I hope you do not want that).
-
-Lets see, so you suggest to
-
-* SUSPEND all but swap device and parents
-* Snapshot
-* Write image to disk
-* SUSPEND swap device and parents
-* Powerdown
-
-Oh no, that does not work, if swap device or its parents uses DMA,
-you've corrupted data. You'd have to do
-
-* SUSPEND all but swap device and parents
-* FREEZE swap device and parents
-* Snapshot
-* UNFREEZE swap device and parents
-* Write
-* SUSPEND swap device and parents
-
-Which means that you still need that FREEZE state, and you get more
-complicated code. (And I have not yet introduce details like system
-devices).
-
-Q: There don't seem to be any generally useful behavioral
-distinctions between SUSPEND and FREEZE.
-
-A: Doing SUSPEND when you are asked to do FREEZE is always correct,
-but it may be unnecessarily slow. If you want your driver to stay simple,
-slowness may not matter to you. It can always be fixed later.
-
-For devices like disk it does matter, you do not want to spindown for
-FREEZE.
-
-Q: After resuming, system is paging heavily, leading to very bad interactivity.
-
-A: Try running
-
-cat /proc/[0-9]*/maps | grep / | sed 's:.* /:/:' | sort -u | while read file
-do
-  test -f "$file" && cat "$file" > /dev/null
-done
-
-after resume. swapoff -a; swapon -a may also be useful.
-
-Q: What happens to devices during swsusp? They seem to be resumed
-during system suspend?
-
-A: That's correct. We need to resume them if we want to write image to
-disk. Whole sequence goes like
-
-      Suspend part
-      ~~~~~~~~~~~~
-      running system, user asks for suspend-to-disk
-
-      user processes are stopped
-
-      suspend(PMSG_FREEZE): devices are frozen so that they don't interfere
-                     with state snapshot
-
-      state snapshot: copy of whole used memory is taken with interrupts disabled
-
-      resume(): devices are woken up so that we can write image to swap
-
-      write image to swap
-
-      suspend(PMSG_SUSPEND): suspend devices so that we can power off
-
-      turn the power off
-
-      Resume part
-      ~~~~~~~~~~~
-      (is actually pretty similar)
-
-      running system, user asks for suspend-to-disk
-
-      user processes are stopped (in common case there are none, but with resume-from-initrd, no one knows)
-
-      read image from disk
-
-      suspend(PMSG_FREEZE): devices are frozen so that they don't interfere
-                     with image restoration
-
-      image restoration: rewrite memory with image
-
-      resume(): devices are woken up so that system can continue
-
-      thaw all user processes
-
-Q: What is this 'Encrypt suspend image' for?
-
-A: First of all: it is not a replacement for dm-crypt encrypted swap.
-It cannot protect your computer while it is suspended. Instead it does
-protect from leaking sensitive data after resume from suspend.
-
-Think of the following: you suspend while an application is running
-that keeps sensitive data in memory. The application itself prevents
-the data from being swapped out. Suspend, however, must write these
-data to swap to be able to resume later on. Without suspend encryption
-your sensitive data are then stored in plaintext on disk.  This means
-that after resume your sensitive data are accessible to all
-applications having direct access to the swap device which was used
-for suspend. If you don't need swap after resume these data can remain
-on disk virtually forever. Thus it can happen that your system gets
-broken in weeks later and sensitive data which you thought were
-encrypted and protected are retrieved and stolen from the swap device.
-To prevent this situation you should use 'Encrypt suspend image'.
-
-During suspend a temporary key is created and this key is used to
-encrypt the data written to disk. When, during resume, the data was
-read back into memory the temporary key is destroyed which simply
-means that all data written to disk during suspend are then
-inaccessible so they can't be stolen later on.  The only thing that
-you must then take care of is that you call 'mkswap' for the swap
-partition used for suspend as early as possible during regular
-boot. This asserts that any temporary key from an oopsed suspend or
-from a failed or aborted resume is erased from the swap device.
-
-As a rule of thumb use encrypted swap to protect your data while your
-system is shut down or suspended. Additionally use the encrypted
-suspend image to prevent sensitive data from being stolen after
-resume.
-
-Q: Can I suspend to a swap file?
-
-A: Generally, yes, you can.  However, it requires you to use the "resume=" and
-"resume_offset=" kernel command line parameters, so the resume from a swap file
-cannot be initiated from an initrd or initramfs image.  See
-swsusp-and-swap-files.txt for details.
-
-Q: Is there a maximum system RAM size that is supported by swsusp?
-
-A: It should work okay with highmem.
-
-Q: Does swsusp (to disk) use only one swap partition or can it use
-multiple swap partitions (aggregate them into one logical space)?
-
-A: Only one swap partition, sorry.
-
-Q: If my application(s) causes lots of memory & swap space to be used
-(over half of the total system RAM), is it correct that it is likely
-to be useless to try to suspend to disk while that app is running?
-
-A: No, it should work okay, as long as your app does not mlock()
-it. Just prepare big enough swap partition.
-
-Q: What information is useful for debugging suspend-to-disk problems?
-
-A: Well, last messages on the screen are always useful. If something
-is broken, it is usually some kernel driver, therefore trying with as
-little as possible modules loaded helps a lot. I also prefer people to
-suspend from console, preferably without X running. Booting with
-init=/bin/bash, then swapon and starting suspend sequence manually
-usually does the trick. Then it is good idea to try with latest
-vanilla kernel.
-
-Q: How can distributions ship a swsusp-supporting kernel with modular
-disk drivers (especially SATA)?
-
-A: Well, it can be done, load the drivers, then do echo into
-/sys/power/resume file from initrd. Be sure not to mount
-anything, not even read-only mount, or you are going to lose your
-data.
-
-Q: How do I make suspend more verbose?
-
-A: If you want to see any non-error kernel messages on the virtual
-terminal the kernel switches to during suspend, you have to set the
-kernel console loglevel to at least 4 (KERN_WARNING), for example by
-doing
-
-       # save the old loglevel
-       read LOGLEVEL DUMMY < /proc/sys/kernel/printk
-       # set the loglevel so we see the progress bar.
-       # if the level is higher than needed, we leave it alone.
-       if [ $LOGLEVEL -lt 5 ]; then
-               echo 5 > /proc/sys/kernel/printk
-               fi
-
-        IMG_SZ=0
-        read IMG_SZ < /sys/power/image_size
-        echo -n disk > /sys/power/state
-        RET=$?
-        #
-        # the logic here is:
-        # if image_size > 0 (without kernel support, IMG_SZ will be zero),
-        # then try again with image_size set to zero.
-       if [ $RET -ne 0 -a $IMG_SZ -ne 0 ]; then # try again with minimal image size
-                echo 0 > /sys/power/image_size
-                echo -n disk > /sys/power/state
-                RET=$?
-        fi
-
-       # restore previous loglevel
-       echo $LOGLEVEL > /proc/sys/kernel/printk
-       exit $RET
-
-Q: Is this true that if I have a mounted filesystem on a USB device and
-I suspend to disk, I can lose data unless the filesystem has been mounted
-with "sync"?
-
-A: That's right ... if you disconnect that device, you may lose data.
-In fact, even with "-o sync" you can lose data if your programs have
-information in buffers they haven't written out to a disk you disconnect,
-or if you disconnect before the device finished saving data you wrote.
-
-Software suspend normally powers down USB controllers, which is equivalent
-to disconnecting all USB devices attached to your system.
-
-Your system might well support low-power modes for its USB controllers
-while the system is asleep, maintaining the connection, using true sleep
-modes like "suspend-to-RAM" or "standby".  (Don't write "disk" to the
-/sys/power/state file; write "standby" or "mem".)  We've not seen any
-hardware that can use these modes through software suspend, although in
-theory some systems might support "platform" modes that won't break the
-USB connections.
-
-Remember that it's always a bad idea to unplug a disk drive containing a
-mounted filesystem.  That's true even when your system is asleep!  The
-safest thing is to unmount all filesystems on removable media (such USB,
-Firewire, CompactFlash, MMC, external SATA, or even IDE hotplug bays)
-before suspending; then remount them after resuming.
-
-There is a work-around for this problem.  For more information, see
-Documentation/driver-api/usb/persist.rst.
-
-Q: Can I suspend-to-disk using a swap partition under LVM?
-
-A: Yes and No.  You can suspend successfully, but the kernel will not be able
-to resume on its own.  You need an initramfs that can recognize the resume
-situation, activate the logical volume containing the swap volume (but not
-touch any filesystems!), and eventually call
-
-echo -n "$major:$minor" > /sys/power/resume
-
-where $major and $minor are the respective major and minor device numbers of
-the swap volume.
-
-uswsusp works with LVM, too.  See http://suspend.sourceforge.net/
-
-Q: I upgraded the kernel from 2.6.15 to 2.6.16. Both kernels were
-compiled with the similar configuration files. Anyway I found that
-suspend to disk (and resume) is much slower on 2.6.16 compared to
-2.6.15. Any idea for why that might happen or how can I speed it up?
-
-A: This is because the size of the suspend image is now greater than
-for 2.6.15 (by saving more data we can get more responsive system
-after resume).
-
-There's the /sys/power/image_size knob that controls the size of the
-image.  If you set it to 0 (eg. by echo 0 > /sys/power/image_size as
-root), the 2.6.15 behavior should be restored.  If it is still too
-slow, take a look at suspend.sf.net -- userland suspend is faster and
-supports LZF compression to speed it up further.
diff --git a/Documentation/power/tricks.rst b/Documentation/power/tricks.rst
new file mode 100644 (file)
index 0000000..ca787f1
--- /dev/null
@@ -0,0 +1,29 @@
+================
+swsusp/S3 tricks
+================
+
+Pavel Machek <pavel@ucw.cz>
+
+If you want to trick swsusp/S3 into working, you might want to try:
+
+* go with minimal config, turn off drivers like USB, AGP you don't
+  really need
+
+* turn off APIC and preempt
+
+* use ext2. At least it has working fsck. [If something seems to go
+  wrong, force fsck when you have a chance]
+
+* turn off modules
+
+* use vga text console, shut down X. [If you really want X, you might
+  want to try vesafb later]
+
+* try running as few processes as possible, preferably go to single
+  user mode.
+
+* due to video issues, swsusp should be easier to get working than
+  S3. Try that first.
+
+When you make it work, try to find out what exactly was it that broke
+suspend, and preferably fix that.
diff --git a/Documentation/power/tricks.txt b/Documentation/power/tricks.txt
deleted file mode 100644 (file)
index a1b8f72..0000000
+++ /dev/null
@@ -1,27 +0,0 @@
-       swsusp/S3 tricks
-       ~~~~~~~~~~~~~~~~
-Pavel Machek <pavel@ucw.cz>
-
-If you want to trick swsusp/S3 into working, you might want to try:
-
-* go with minimal config, turn off drivers like USB, AGP you don't
-  really need
-
-* turn off APIC and preempt
-
-* use ext2. At least it has working fsck. [If something seems to go
-  wrong, force fsck when you have a chance]
-
-* turn off modules
-
-* use vga text console, shut down X. [If you really want X, you might
-  want to try vesafb later]
-
-* try running as few processes as possible, preferably go to single
-  user mode.
-
-* due to video issues, swsusp should be easier to get working than
-  S3. Try that first.
-
-When you make it work, try to find out what exactly was it that broke
-suspend, and preferably fix that.
diff --git a/Documentation/power/userland-swsusp.rst b/Documentation/power/userland-swsusp.rst
new file mode 100644 (file)
index 0000000..a0fa51b
--- /dev/null
@@ -0,0 +1,191 @@
+=====================================================
+Documentation for userland software suspend interface
+=====================================================
+
+       (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
+
+First, the warnings at the beginning of swsusp.txt still apply.
+
+Second, you should read the FAQ in swsusp.txt _now_ if you have not
+done it already.
+
+Now, to use the userland interface for software suspend you need special
+utilities that will read/write the system memory snapshot from/to the
+kernel.  Such utilities are available, for example, from
+<http://suspend.sourceforge.net>.  You may want to have a look at them if you
+are going to develop your own suspend/resume utilities.
+
+The interface consists of a character device providing the open(),
+release(), read(), and write() operations as well as several ioctl()
+commands defined in include/linux/suspend_ioctls.h .  The major and minor
+numbers of the device are, respectively, 10 and 231, and they can
+be read from /sys/class/misc/snapshot/dev.
+
+The device can be open either for reading or for writing.  If open for
+reading, it is considered to be in the suspend mode.  Otherwise it is
+assumed to be in the resume mode.  The device cannot be open for simultaneous
+reading and writing.  It is also impossible to have the device open more than
+once at a time.
+
+Even opening the device has side effects. Data structures are
+allocated, and PM_HIBERNATION_PREPARE / PM_RESTORE_PREPARE chains are
+called.
+
+The ioctl() commands recognized by the device are:
+
+SNAPSHOT_FREEZE
+       freeze user space processes (the current process is
+       not frozen); this is required for SNAPSHOT_CREATE_IMAGE
+       and SNAPSHOT_ATOMIC_RESTORE to succeed
+
+SNAPSHOT_UNFREEZE
+       thaw user space processes frozen by SNAPSHOT_FREEZE
+
+SNAPSHOT_CREATE_IMAGE
+       create a snapshot of the system memory; the
+       last argument of ioctl() should be a pointer to an int variable,
+       the value of which will indicate whether the call returned after
+       creating the snapshot (1) or after restoring the system memory state
+       from it (0) (after resume the system finds itself finishing the
+       SNAPSHOT_CREATE_IMAGE ioctl() again); after the snapshot
+       has been created the read() operation can be used to transfer
+       it out of the kernel
+
+SNAPSHOT_ATOMIC_RESTORE
+       restore the system memory state from the
+       uploaded snapshot image; before calling it you should transfer
+       the system memory snapshot back to the kernel using the write()
+       operation; this call will not succeed if the snapshot
+       image is not available to the kernel
+
+SNAPSHOT_FREE
+       free memory allocated for the snapshot image
+
+SNAPSHOT_PREF_IMAGE_SIZE
+       set the preferred maximum size of the image
+       (the kernel will do its best to ensure the image size will not exceed
+       this number, but if it turns out to be impossible, the kernel will
+       create the smallest image possible)
+
+SNAPSHOT_GET_IMAGE_SIZE
+       return the actual size of the hibernation image
+
+SNAPSHOT_AVAIL_SWAP_SIZE
+       return the amount of available swap in bytes (the
+       last argument should be a pointer to an unsigned int variable that will
+       contain the result if the call is successful).
+
+SNAPSHOT_ALLOC_SWAP_PAGE
+       allocate a swap page from the resume partition
+       (the last argument should be a pointer to a loff_t variable that
+       will contain the swap page offset if the call is successful)
+
+SNAPSHOT_FREE_SWAP_PAGES
+       free all swap pages allocated by
+       SNAPSHOT_ALLOC_SWAP_PAGE
+
+SNAPSHOT_SET_SWAP_AREA
+       set the resume partition and the offset (in <PAGE_SIZE>
+       units) from the beginning of the partition at which the swap header is
+       located (the last ioctl() argument should point to a struct
+       resume_swap_area, as defined in kernel/power/suspend_ioctls.h,
+       containing the resume device specification and the offset); for swap
+       partitions the offset is always 0, but it is different from zero for
+       swap files (see Documentation/power/swsusp-and-swap-files.rst for
+       details).
+
+SNAPSHOT_PLATFORM_SUPPORT
+       enable/disable the hibernation platform support,
+       depending on the argument value (enable, if the argument is nonzero)
+
+SNAPSHOT_POWER_OFF
+       make the kernel transition the system to the hibernation
+       state (eg. ACPI S4) using the platform (eg. ACPI) driver
+
+SNAPSHOT_S2RAM
+       suspend to RAM; using this call causes the kernel to
+       immediately enter the suspend-to-RAM state, so this call must always
+       be preceded by the SNAPSHOT_FREEZE call and it is also necessary
+       to use the SNAPSHOT_UNFREEZE call after the system wakes up.  This call
+       is needed to implement the suspend-to-both mechanism in which the
+       suspend image is first created, as though the system had been suspended
+       to disk, and then the system is suspended to RAM (this makes it possible
+       to resume the system from RAM if there's enough battery power or restore
+       its state on the basis of the saved suspend image otherwise)
+
+The device's read() operation can be used to transfer the snapshot image from
+the kernel.  It has the following limitations:
+
+- you cannot read() more than one virtual memory page at a time
+- read()s across page boundaries are impossible (ie. if you read() 1/2 of
+  a page in the previous call, you will only be able to read()
+  **at most** 1/2 of the page in the next call)
+
+The device's write() operation is used for uploading the system memory snapshot
+into the kernel.  It has the same limitations as the read() operation.
+
+The release() operation frees all memory allocated for the snapshot image
+and all swap pages allocated with SNAPSHOT_ALLOC_SWAP_PAGE (if any).
+Thus it is not necessary to use either SNAPSHOT_FREE or
+SNAPSHOT_FREE_SWAP_PAGES before closing the device (in fact it will also
+unfreeze user space processes frozen by SNAPSHOT_UNFREEZE if they are
+still frozen when the device is being closed).
+
+Currently it is assumed that the userland utilities reading/writing the
+snapshot image from/to the kernel will use a swap partition, called the resume
+partition, or a swap file as storage space (if a swap file is used, the resume
+partition is the partition that holds this file).  However, this is not really
+required, as they can use, for example, a special (blank) suspend partition or
+a file on a partition that is unmounted before SNAPSHOT_CREATE_IMAGE and
+mounted afterwards.
+
+These utilities MUST NOT make any assumptions regarding the ordering of
+data within the snapshot image.  The contents of the image are entirely owned
+by the kernel and its structure may be changed in future kernel releases.
+
+The snapshot image MUST be written to the kernel unaltered (ie. all of the image
+data, metadata and header MUST be written in _exactly_ the same amount, form
+and order in which they have been read).  Otherwise, the behavior of the
+resumed system may be totally unpredictable.
+
+While executing SNAPSHOT_ATOMIC_RESTORE the kernel checks if the
+structure of the snapshot image is consistent with the information stored
+in the image header.  If any inconsistencies are detected,
+SNAPSHOT_ATOMIC_RESTORE will not succeed.  Still, this is not a fool-proof
+mechanism and the userland utilities using the interface SHOULD use additional
+means, such as checksums, to ensure the integrity of the snapshot image.
+
+The suspending and resuming utilities MUST lock themselves in memory,
+preferably using mlockall(), before calling SNAPSHOT_FREEZE.
+
+The suspending utility MUST check the value stored by SNAPSHOT_CREATE_IMAGE
+in the memory location pointed to by the last argument of ioctl() and proceed
+in accordance with it:
+
+1.     If the value is 1 (ie. the system memory snapshot has just been
+       created and the system is ready for saving it):
+
+       (a)     The suspending utility MUST NOT close the snapshot device
+               _unless_ the whole suspend procedure is to be cancelled, in
+               which case, if the snapshot image has already been saved, the
+               suspending utility SHOULD destroy it, preferably by zapping
+               its header.  If the suspend is not to be cancelled, the
+               system MUST be powered off or rebooted after the snapshot
+               image has been saved.
+       (b)     The suspending utility SHOULD NOT attempt to perform any
+               file system operations (including reads) on the file systems
+               that were mounted before SNAPSHOT_CREATE_IMAGE has been
+               called.  However, it MAY mount a file system that was not
+               mounted at that time and perform some operations on it (eg.
+               use it for saving the image).
+
+2.     If the value is 0 (ie. the system state has just been restored from
+       the snapshot image), the suspending utility MUST close the snapshot
+       device.  Afterwards it will be treated as a regular userland process,
+       so it need not exit.
+
+The resuming utility SHOULD NOT attempt to mount any file systems that could
+be mounted before suspend and SHOULD NOT attempt to perform any operations
+involving such file systems.
+
+For details, please refer to the source code.
diff --git a/Documentation/power/userland-swsusp.txt b/Documentation/power/userland-swsusp.txt
deleted file mode 100644 (file)
index bbfcd1b..0000000
+++ /dev/null
@@ -1,170 +0,0 @@
-Documentation for userland software suspend interface
-       (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
-
-First, the warnings at the beginning of swsusp.txt still apply.
-
-Second, you should read the FAQ in swsusp.txt _now_ if you have not
-done it already.
-
-Now, to use the userland interface for software suspend you need special
-utilities that will read/write the system memory snapshot from/to the
-kernel.  Such utilities are available, for example, from
-<http://suspend.sourceforge.net>.  You may want to have a look at them if you
-are going to develop your own suspend/resume utilities.
-
-The interface consists of a character device providing the open(),
-release(), read(), and write() operations as well as several ioctl()
-commands defined in include/linux/suspend_ioctls.h .  The major and minor
-numbers of the device are, respectively, 10 and 231, and they can
-be read from /sys/class/misc/snapshot/dev.
-
-The device can be open either for reading or for writing.  If open for
-reading, it is considered to be in the suspend mode.  Otherwise it is
-assumed to be in the resume mode.  The device cannot be open for simultaneous
-reading and writing.  It is also impossible to have the device open more than
-once at a time.
-
-Even opening the device has side effects. Data structures are
-allocated, and PM_HIBERNATION_PREPARE / PM_RESTORE_PREPARE chains are
-called.
-
-The ioctl() commands recognized by the device are:
-
-SNAPSHOT_FREEZE - freeze user space processes (the current process is
-       not frozen); this is required for SNAPSHOT_CREATE_IMAGE
-       and SNAPSHOT_ATOMIC_RESTORE to succeed
-
-SNAPSHOT_UNFREEZE - thaw user space processes frozen by SNAPSHOT_FREEZE
-
-SNAPSHOT_CREATE_IMAGE - create a snapshot of the system memory; the
-       last argument of ioctl() should be a pointer to an int variable,
-       the value of which will indicate whether the call returned after
-       creating the snapshot (1) or after restoring the system memory state
-       from it (0) (after resume the system finds itself finishing the
-       SNAPSHOT_CREATE_IMAGE ioctl() again); after the snapshot
-       has been created the read() operation can be used to transfer
-       it out of the kernel
-
-SNAPSHOT_ATOMIC_RESTORE - restore the system memory state from the
-       uploaded snapshot image; before calling it you should transfer
-       the system memory snapshot back to the kernel using the write()
-       operation; this call will not succeed if the snapshot
-       image is not available to the kernel
-
-SNAPSHOT_FREE - free memory allocated for the snapshot image
-
-SNAPSHOT_PREF_IMAGE_SIZE - set the preferred maximum size of the image
-       (the kernel will do its best to ensure the image size will not exceed
-       this number, but if it turns out to be impossible, the kernel will
-       create the smallest image possible)
-
-SNAPSHOT_GET_IMAGE_SIZE - return the actual size of the hibernation image
-
-SNAPSHOT_AVAIL_SWAP_SIZE - return the amount of available swap in bytes (the
-       last argument should be a pointer to an unsigned int variable that will
-       contain the result if the call is successful).
-
-SNAPSHOT_ALLOC_SWAP_PAGE - allocate a swap page from the resume partition
-       (the last argument should be a pointer to a loff_t variable that
-       will contain the swap page offset if the call is successful)
-
-SNAPSHOT_FREE_SWAP_PAGES - free all swap pages allocated by
-       SNAPSHOT_ALLOC_SWAP_PAGE
-
-SNAPSHOT_SET_SWAP_AREA - set the resume partition and the offset (in <PAGE_SIZE>
-       units) from the beginning of the partition at which the swap header is
-       located (the last ioctl() argument should point to a struct
-       resume_swap_area, as defined in kernel/power/suspend_ioctls.h,
-       containing the resume device specification and the offset); for swap
-       partitions the offset is always 0, but it is different from zero for
-       swap files (see Documentation/power/swsusp-and-swap-files.txt for
-       details).
-
-SNAPSHOT_PLATFORM_SUPPORT - enable/disable the hibernation platform support,
-       depending on the argument value (enable, if the argument is nonzero)
-
-SNAPSHOT_POWER_OFF - make the kernel transition the system to the hibernation
-       state (eg. ACPI S4) using the platform (eg. ACPI) driver
-
-SNAPSHOT_S2RAM - suspend to RAM; using this call causes the kernel to
-       immediately enter the suspend-to-RAM state, so this call must always
-       be preceded by the SNAPSHOT_FREEZE call and it is also necessary
-       to use the SNAPSHOT_UNFREEZE call after the system wakes up.  This call
-       is needed to implement the suspend-to-both mechanism in which the
-       suspend image is first created, as though the system had been suspended
-       to disk, and then the system is suspended to RAM (this makes it possible
-       to resume the system from RAM if there's enough battery power or restore
-       its state on the basis of the saved suspend image otherwise)
-
-The device's read() operation can be used to transfer the snapshot image from
-the kernel.  It has the following limitations:
-- you cannot read() more than one virtual memory page at a time
-- read()s across page boundaries are impossible (ie. if you read() 1/2 of
-       a page in the previous call, you will only be able to read()
-       _at_ _most_ 1/2 of the page in the next call)
-
-The device's write() operation is used for uploading the system memory snapshot
-into the kernel.  It has the same limitations as the read() operation.
-
-The release() operation frees all memory allocated for the snapshot image
-and all swap pages allocated with SNAPSHOT_ALLOC_SWAP_PAGE (if any).
-Thus it is not necessary to use either SNAPSHOT_FREE or
-SNAPSHOT_FREE_SWAP_PAGES before closing the device (in fact it will also
-unfreeze user space processes frozen by SNAPSHOT_UNFREEZE if they are
-still frozen when the device is being closed).
-
-Currently it is assumed that the userland utilities reading/writing the
-snapshot image from/to the kernel will use a swap partition, called the resume
-partition, or a swap file as storage space (if a swap file is used, the resume
-partition is the partition that holds this file).  However, this is not really
-required, as they can use, for example, a special (blank) suspend partition or
-a file on a partition that is unmounted before SNAPSHOT_CREATE_IMAGE and
-mounted afterwards.
-
-These utilities MUST NOT make any assumptions regarding the ordering of
-data within the snapshot image.  The contents of the image are entirely owned
-by the kernel and its structure may be changed in future kernel releases.
-
-The snapshot image MUST be written to the kernel unaltered (ie. all of the image
-data, metadata and header MUST be written in _exactly_ the same amount, form
-and order in which they have been read).  Otherwise, the behavior of the
-resumed system may be totally unpredictable.
-
-While executing SNAPSHOT_ATOMIC_RESTORE the kernel checks if the
-structure of the snapshot image is consistent with the information stored
-in the image header.  If any inconsistencies are detected,
-SNAPSHOT_ATOMIC_RESTORE will not succeed.  Still, this is not a fool-proof
-mechanism and the userland utilities using the interface SHOULD use additional
-means, such as checksums, to ensure the integrity of the snapshot image.
-
-The suspending and resuming utilities MUST lock themselves in memory,
-preferably using mlockall(), before calling SNAPSHOT_FREEZE.
-
-The suspending utility MUST check the value stored by SNAPSHOT_CREATE_IMAGE
-in the memory location pointed to by the last argument of ioctl() and proceed
-in accordance with it:
-1.     If the value is 1 (ie. the system memory snapshot has just been
-       created and the system is ready for saving it):
-       (a)     The suspending utility MUST NOT close the snapshot device
-               _unless_ the whole suspend procedure is to be cancelled, in
-               which case, if the snapshot image has already been saved, the
-               suspending utility SHOULD destroy it, preferably by zapping
-               its header.  If the suspend is not to be cancelled, the
-               system MUST be powered off or rebooted after the snapshot
-               image has been saved.
-       (b)     The suspending utility SHOULD NOT attempt to perform any
-               file system operations (including reads) on the file systems
-               that were mounted before SNAPSHOT_CREATE_IMAGE has been
-               called.  However, it MAY mount a file system that was not
-               mounted at that time and perform some operations on it (eg.
-               use it for saving the image).
-2.     If the value is 0 (ie. the system state has just been restored from
-       the snapshot image), the suspending utility MUST close the snapshot
-       device.  Afterwards it will be treated as a regular userland process,
-       so it need not exit.
-
-The resuming utility SHOULD NOT attempt to mount any file systems that could
-be mounted before suspend and SHOULD NOT attempt to perform any operations
-involving such file systems.
-
-For details, please refer to the source code.
diff --git a/Documentation/power/video.rst b/Documentation/power/video.rst
new file mode 100644 (file)
index 0000000..337a2ba
--- /dev/null
@@ -0,0 +1,213 @@
+===========================
+Video issues with S3 resume
+===========================
+
+2003-2006, Pavel Machek
+
+During S3 resume, hardware needs to be reinitialized. For most
+devices, this is easy, and kernel driver knows how to do
+it. Unfortunately there's one exception: video card. Those are usually
+initialized by BIOS, and kernel does not have enough information to
+boot video card. (Kernel usually does not even contain video card
+driver -- vesafb and vgacon are widely used).
+
+This is not problem for swsusp, because during swsusp resume, BIOS is
+run normally so video card is normally initialized. It should not be
+problem for S1 standby, because hardware should retain its state over
+that.
+
+We either have to run video BIOS during early resume, or interpret it
+using vbetool later, or maybe nothing is necessary on particular
+system because video state is preserved. Unfortunately different
+methods work on different systems, and no known method suits all of
+them.
+
+Userland application called s2ram has been developed; it contains long
+whitelist of systems, and automatically selects working method for a
+given system. It can be downloaded from CVS at
+www.sf.net/projects/suspend . If you get a system that is not in the
+whitelist, please try to find a working solution, and submit whitelist
+entry so that work does not need to be repeated.
+
+Currently, VBE_SAVE method (6 below) works on most
+systems. Unfortunately, vbetool only runs after userland is resumed,
+so it makes debugging of early resume problems
+hard/impossible. Methods that do not rely on userland are preferable.
+
+Details
+~~~~~~~
+
+There are a few types of systems where video works after S3 resume:
+
+(1) systems where video state is preserved over S3.
+
+(2) systems where it is possible to call the video BIOS during S3
+    resume. Unfortunately, it is not correct to call the video BIOS at
+    that point, but it happens to work on some machines. Use
+    acpi_sleep=s3_bios.
+
+(3) systems that initialize video card into vga text mode and where
+    the BIOS works well enough to be able to set video mode. Use
+    acpi_sleep=s3_mode on these.
+
+(4) on some systems s3_bios kicks video into text mode, and
+    acpi_sleep=s3_bios,s3_mode is needed.
+
+(5) radeon systems, where X can soft-boot your video card. You'll need
+    a new enough X, and a plain text console (no vesafb or radeonfb). See
+    http://www.doesi.gmxhome.de/linux/tm800s3/s3.html for more information.
+    Alternatively, you should use vbetool (6) instead.
+
+(6) other radeon systems, where vbetool is enough to bring system back
+    to life. It needs text console to be working. Do vbetool vbestate
+    save > /tmp/delme; echo 3 > /proc/acpi/sleep; vbetool post; vbetool
+    vbestate restore < /tmp/delme; setfont <whatever>, and your video
+    should work.
+
+(7) on some systems, it is possible to boot most of kernel, and then
+    POSTing bios works. Ole Rohne has patch to do just that at
+    http://dev.gentoo.org/~marineam/patch-radeonfb-2.6.11-rc2-mm2.
+
+(8) on some systems, you can use the video_post utility and or
+    do echo 3 > /sys/power/state  && /usr/sbin/video_post - which will
+    initialize the display in console mode. If you are in X, you can switch
+    to a virtual terminal and back to X using  CTRL+ALT+F1 - CTRL+ALT+F7 to get
+    the display working in graphical mode again.
+
+Now, if you pass acpi_sleep=something, and it does not work with your
+bios, you'll get a hard crash during resume. Be careful. Also it is
+safest to do your experiments with plain old VGA console. The vesafb
+and radeonfb (etc) drivers have a tendency to crash the machine during
+resume.
+
+You may have a system where none of above works. At that point you
+either invent another ugly hack that works, or write proper driver for
+your video card (good luck getting docs :-(). Maybe suspending from X
+(proper X, knowing your hardware, not XF68_FBcon) might have better
+chance of working.
+
+Table of known working notebooks:
+
+
+=============================== ===============================================
+Model                           hack (or "how to do it")
+=============================== ===============================================
+Acer Aspire 1406LC             ole's late BIOS init (7), turn off DRI
+Acer TM 230                    s3_bios (2)
+Acer TM 242FX                  vbetool (6)
+Acer TM C110                   video_post (8)
+Acer TM C300                    vga=normal (only suspend on console, not in X),
+                               vbetool (6) or video_post (8)
+Acer TM 4052LCi                        s3_bios (2)
+Acer TM 636Lci                 s3_bios,s3_mode (4)
+Acer TM 650 (Radeon M7)                vga=normal plus boot-radeon (5) gets text
+                               console back
+Acer TM 660                    ??? [#f1]_
+Acer TM 800                    vga=normal, X patches, see webpage (5)
+                               or vbetool (6)
+Acer TM 803                    vga=normal, X patches, see webpage (5)
+                               or vbetool (6)
+Acer TM 803LCi                 vga=normal, vbetool (6)
+Arima W730a                    vbetool needed (6)
+Asus L2400D                     s3_mode (3) [#f2]_ (S1 also works OK)
+Asus L3350M (SiS 740)           (6)
+Asus L3800C (Radeon M7)                s3_bios (2) (S1 also works OK)
+Asus M6887Ne                   vga=normal, s3_bios (2), use radeon driver
+                               instead of fglrx in x.org
+Athlon64 desktop prototype     s3_bios (2)
+Compal CL-50                   ??? [#f1]_
+Compaq Armada E500 - P3-700     none (1) (S1 also works OK)
+Compaq Evo N620c               vga=normal, s3_bios (2)
+Dell 600m, ATI R250 Lf         none (1), but needs xorg-x11-6.8.1.902-1
+Dell D600, ATI RV250            vga=normal and X, or try vbestate (6)
+Dell D610                      vga=normal and X (possibly vbestate (6) too,
+                               but not tested)
+Dell Inspiron 4000             ??? [#f1]_
+Dell Inspiron 500m             ??? [#f1]_
+Dell Inspiron 510m             ???
+Dell Inspiron 5150             vbetool needed (6)
+Dell Inspiron 600m             ??? [#f1]_
+Dell Inspiron 8200             ??? [#f1]_
+Dell Inspiron 8500             ??? [#f1]_
+Dell Inspiron 8600             ??? [#f1]_
+eMachines athlon64 machines    vbetool needed (6) (someone please get
+                               me model #s)
+HP NC6000                      s3_bios, may not use radeonfb (2);
+                               or vbetool (6)
+HP NX7000                      ??? [#f1]_
+HP Pavilion ZD7000             vbetool post needed, need open-source nv
+                               driver for X
+HP Omnibook XE3        athlon version  none (1)
+HP Omnibook XE3GC              none (1), video is S3 Savage/IX-MV
+HP Omnibook XE3L-GF            vbetool (6)
+HP Omnibook 5150               none (1), (S1 also works OK)
+IBM TP T20, model 2647-44G     none (1), video is S3 Inc. 86C270-294
+                               Savage/IX-MV, vesafb gets "interesting"
+                               but X work.
+IBM TP A31 / Type 2652-M5G      s3_mode (3) [works ok with
+                               BIOS 1.04 2002-08-23, but not at all with
+                               BIOS 1.11 2004-11-05 :-(]
+IBM TP R32 / Type 2658-MMG      none (1)
+IBM TP R40 2722B3G             ??? [#f1]_
+IBM TP R50p / Type 1832-22U     s3_bios (2)
+IBM TP R51                     none (1)
+IBM TP T30     236681A         ??? [#f1]_
+IBM TP T40 / Type 2373-MU4      none (1)
+IBM TP T40p                    none (1)
+IBM TP R40p                    s3_bios (2)
+IBM TP T41p                    s3_bios (2), switch to X after resume
+IBM TP T42                     s3_bios (2)
+IBM ThinkPad T42p (2373-GTG)   s3_bios (2)
+IBM TP X20                     ??? [#f1]_
+IBM TP X30                     s3_bios, s3_mode (4)
+IBM TP X31 / Type 2672-XXH      none (1), use radeontool
+                               (http://fdd.com/software/radeon/) to
+                               turn off backlight.
+IBM TP X32                     none (1), but backlight is on and video is
+                               trashed after long suspend. s3_bios,
+                               s3_mode (4) works too. Perhaps that gets
+                               better results?
+IBM Thinkpad X40 Type 2371-7JG  s3_bios,s3_mode (4)
+IBM TP 600e                    none(1), but a switch to console and
+                               back to X is needed
+Medion MD4220                  ??? [#f1]_
+Samsung P35                    vbetool needed (6)
+Sharp PC-AR10 (ATI rage)       none (1), backlight does not switch off
+Sony Vaio PCG-C1VRX/K          s3_bios (2)
+Sony Vaio PCG-F403             ??? [#f1]_
+Sony Vaio PCG-GRT995MP         none (1), works with 'nv' X driver
+Sony Vaio PCG-GR7/K            none (1), but needs radeonfb, use
+                               radeontool (http://fdd.com/software/radeon/)
+                               to turn off backlight.
+Sony Vaio PCG-N505SN           ??? [#f1]_
+Sony Vaio vgn-s260             X or boot-radeon can init it (5)
+Sony Vaio vgn-S580BH           vga=normal, but suspend from X. Console will
+                               be blank unless you return to X.
+Sony Vaio vgn-FS115B           s3_bios (2),s3_mode (4)
+Toshiba Libretto L5            none (1)
+Toshiba Libretto 100CT/110CT    vbetool (6)
+Toshiba Portege 3020CT         s3_mode (3)
+Toshiba Satellite 4030CDT      s3_mode (3) (S1 also works OK)
+Toshiba Satellite 4080XCDT      s3_mode (3) (S1 also works OK)
+Toshiba Satellite 4090XCDT      ??? [#f1]_
+Toshiba Satellite P10-554       s3_bios,s3_mode (4)[#f3]_
+Toshiba M30                     (2) xor X with nvidia driver using internal AGP
+Uniwill 244IIO                 ??? [#f1]_
+=============================== ===============================================
+
+Known working desktop systems
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+=================== ============================= ========================
+Mainboard          Graphics card                 hack (or "how to do it")
+=================== ============================= ========================
+Asus A7V8X         nVidia RIVA TNT2 model 64     s3_bios,s3_mode (4)
+=================== ============================= ========================
+
+
+.. [#f1] from https://wiki.ubuntu.com/HoaryPMResults, not sure
+         which options to use. If you know, please tell me.
+
+.. [#f2] To be tested with a newer kernel.
+
+.. [#f3] Not with SMP kernel, UP only.
diff --git a/Documentation/power/video.txt b/Documentation/power/video.txt
deleted file mode 100644 (file)
index 3e6272b..0000000
+++ /dev/null
@@ -1,185 +0,0 @@
-
-               Video issues with S3 resume
-               ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-                 2003-2006, Pavel Machek
-
-During S3 resume, hardware needs to be reinitialized. For most
-devices, this is easy, and kernel driver knows how to do
-it. Unfortunately there's one exception: video card. Those are usually
-initialized by BIOS, and kernel does not have enough information to
-boot video card. (Kernel usually does not even contain video card
-driver -- vesafb and vgacon are widely used).
-
-This is not problem for swsusp, because during swsusp resume, BIOS is
-run normally so video card is normally initialized. It should not be
-problem for S1 standby, because hardware should retain its state over
-that.
-
-We either have to run video BIOS during early resume, or interpret it
-using vbetool later, or maybe nothing is necessary on particular
-system because video state is preserved. Unfortunately different
-methods work on different systems, and no known method suits all of
-them.
-
-Userland application called s2ram has been developed; it contains long
-whitelist of systems, and automatically selects working method for a
-given system. It can be downloaded from CVS at
-www.sf.net/projects/suspend . If you get a system that is not in the
-whitelist, please try to find a working solution, and submit whitelist
-entry so that work does not need to be repeated.
-
-Currently, VBE_SAVE method (6 below) works on most
-systems. Unfortunately, vbetool only runs after userland is resumed,
-so it makes debugging of early resume problems
-hard/impossible. Methods that do not rely on userland are preferable.
-
-Details
-~~~~~~~
-
-There are a few types of systems where video works after S3 resume:
-
-(1) systems where video state is preserved over S3.
-
-(2) systems where it is possible to call the video BIOS during S3
-  resume. Unfortunately, it is not correct to call the video BIOS at
-  that point, but it happens to work on some machines. Use
-  acpi_sleep=s3_bios.
-
-(3) systems that initialize video card into vga text mode and where
-  the BIOS works well enough to be able to set video mode. Use
-  acpi_sleep=s3_mode on these.
-
-(4) on some systems s3_bios kicks video into text mode, and
-  acpi_sleep=s3_bios,s3_mode is needed.
-
-(5) radeon systems, where X can soft-boot your video card. You'll need
-  a new enough X, and a plain text console (no vesafb or radeonfb). See
-  http://www.doesi.gmxhome.de/linux/tm800s3/s3.html for more information.
-  Alternatively, you should use vbetool (6) instead.
-
-(6) other radeon systems, where vbetool is enough to bring system back
-  to life. It needs text console to be working. Do vbetool vbestate
-  save > /tmp/delme; echo 3 > /proc/acpi/sleep; vbetool post; vbetool
-  vbestate restore < /tmp/delme; setfont <whatever>, and your video
-  should work.
-
-(7) on some systems, it is possible to boot most of kernel, and then
-  POSTing bios works. Ole Rohne has patch to do just that at
-  http://dev.gentoo.org/~marineam/patch-radeonfb-2.6.11-rc2-mm2.
-
-(8) on some systems, you can use the video_post utility and or 
-  do echo 3 > /sys/power/state  && /usr/sbin/video_post - which will 
-  initialize the display in console mode. If you are in X, you can switch
-  to a virtual terminal and back to X using  CTRL+ALT+F1 - CTRL+ALT+F7 to get
-  the display working in graphical mode again.
-
-Now, if you pass acpi_sleep=something, and it does not work with your
-bios, you'll get a hard crash during resume. Be careful. Also it is
-safest to do your experiments with plain old VGA console. The vesafb
-and radeonfb (etc) drivers have a tendency to crash the machine during
-resume.
-
-You may have a system where none of above works. At that point you
-either invent another ugly hack that works, or write proper driver for
-your video card (good luck getting docs :-(). Maybe suspending from X
-(proper X, knowing your hardware, not XF68_FBcon) might have better
-chance of working.
-
-Table of known working notebooks:
-
-Model                           hack (or "how to do it")
-------------------------------------------------------------------------------
-Acer Aspire 1406LC             ole's late BIOS init (7), turn off DRI
-Acer TM 230                    s3_bios (2)
-Acer TM 242FX                  vbetool (6)
-Acer TM C110                   video_post (8)
-Acer TM C300                    vga=normal (only suspend on console, not in X), vbetool (6) or video_post (8)
-Acer TM 4052LCi                        s3_bios (2)
-Acer TM 636Lci                 s3_bios,s3_mode (4)
-Acer TM 650 (Radeon M7)                vga=normal plus boot-radeon (5) gets text console back
-Acer TM 660                    ??? (*)
-Acer TM 800                    vga=normal, X patches, see webpage (5) or vbetool (6)
-Acer TM 803                    vga=normal, X patches, see webpage (5) or vbetool (6)
-Acer TM 803LCi                 vga=normal, vbetool (6)
-Arima W730a                    vbetool needed (6)
-Asus L2400D                     s3_mode (3)(***) (S1 also works OK)
-Asus L3350M (SiS 740)           (6)
-Asus L3800C (Radeon M7)                s3_bios (2) (S1 also works OK)
-Asus M6887Ne                   vga=normal, s3_bios (2), use radeon driver instead of fglrx in x.org
-Athlon64 desktop prototype     s3_bios (2)
-Compal CL-50                   ??? (*)
-Compaq Armada E500 - P3-700     none (1) (S1 also works OK)
-Compaq Evo N620c               vga=normal, s3_bios (2)
-Dell 600m, ATI R250 Lf         none (1), but needs xorg-x11-6.8.1.902-1
-Dell D600, ATI RV250            vga=normal and X, or try vbestate (6)
-Dell D610                      vga=normal and X (possibly vbestate (6) too, but not tested)
-Dell Inspiron 4000             ??? (*)
-Dell Inspiron 500m             ??? (*)
-Dell Inspiron 510m             ???
-Dell Inspiron 5150             vbetool needed (6)
-Dell Inspiron 600m             ??? (*)
-Dell Inspiron 8200             ??? (*)
-Dell Inspiron 8500             ??? (*)
-Dell Inspiron 8600             ??? (*)
-eMachines athlon64 machines    vbetool needed (6) (someone please get me model #s)
-HP NC6000                      s3_bios, may not use radeonfb (2); or vbetool (6)
-HP NX7000                      ??? (*)
-HP Pavilion ZD7000             vbetool post needed, need open-source nv driver for X
-HP Omnibook XE3        athlon version  none (1)
-HP Omnibook XE3GC              none (1), video is S3 Savage/IX-MV
-HP Omnibook XE3L-GF            vbetool (6)
-HP Omnibook 5150               none (1), (S1 also works OK)
-IBM TP T20, model 2647-44G     none (1), video is S3 Inc. 86C270-294 Savage/IX-MV, vesafb gets "interesting" but X work.
-IBM TP A31 / Type 2652-M5G      s3_mode (3) [works ok with BIOS 1.04 2002-08-23, but not at all with BIOS 1.11 2004-11-05 :-(]
-IBM TP R32 / Type 2658-MMG      none (1)
-IBM TP R40 2722B3G             ??? (*)
-IBM TP R50p / Type 1832-22U     s3_bios (2)
-IBM TP R51                     none (1)
-IBM TP T30     236681A         ??? (*)
-IBM TP T40 / Type 2373-MU4      none (1)
-IBM TP T40p                    none (1)
-IBM TP R40p                    s3_bios (2)
-IBM TP T41p                    s3_bios (2), switch to X after resume
-IBM TP T42                     s3_bios (2)
-IBM ThinkPad T42p (2373-GTG)   s3_bios (2)
-IBM TP X20                     ??? (*)
-IBM TP X30                     s3_bios, s3_mode (4)
-IBM TP X31 / Type 2672-XXH      none (1), use radeontool (http://fdd.com/software/radeon/) to turn off backlight.
-IBM TP X32                     none (1), but backlight is on and video is trashed after long suspend. s3_bios,s3_mode (4) works too. Perhaps that gets better results?
-IBM Thinkpad X40 Type 2371-7JG  s3_bios,s3_mode (4)
-IBM TP 600e                    none(1), but a switch to console and back to X is needed
-Medion MD4220                  ??? (*)
-Samsung P35                    vbetool needed (6)
-Sharp PC-AR10 (ATI rage)       none (1), backlight does not switch off
-Sony Vaio PCG-C1VRX/K          s3_bios (2)
-Sony Vaio PCG-F403             ??? (*)
-Sony Vaio PCG-GRT995MP         none (1), works with 'nv' X driver
-Sony Vaio PCG-GR7/K            none (1), but needs radeonfb, use radeontool (http://fdd.com/software/radeon/) to turn off backlight.
-Sony Vaio PCG-N505SN           ??? (*)
-Sony Vaio vgn-s260             X or boot-radeon can init it (5)
-Sony Vaio vgn-S580BH           vga=normal, but suspend from X. Console will be blank unless you return to X.
-Sony Vaio vgn-FS115B           s3_bios (2),s3_mode (4)
-Toshiba Libretto L5            none (1)
-Toshiba Libretto 100CT/110CT    vbetool (6)
-Toshiba Portege 3020CT         s3_mode (3)
-Toshiba Satellite 4030CDT      s3_mode (3) (S1 also works OK)
-Toshiba Satellite 4080XCDT      s3_mode (3) (S1 also works OK)
-Toshiba Satellite 4090XCDT      ??? (*)
-Toshiba Satellite P10-554       s3_bios,s3_mode (4)(****)
-Toshiba M30                     (2) xor X with nvidia driver using internal AGP
-Uniwill 244IIO                 ??? (*)
-
-Known working desktop systems
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-Mainboard          Graphics card                 hack (or "how to do it")
-------------------------------------------------------------------------------
-Asus A7V8X         nVidia RIVA TNT2 model 64     s3_bios,s3_mode (4)
-
-
-(*) from https://wiki.ubuntu.com/HoaryPMResults, not sure
-    which options to use. If you know, please tell me.
-
-(***) To be tested with a newer kernel.
-
-(****) Not with SMP kernel, UP only.
index 58bc047e7b95e332fdebbc6e379b09e720f9c499..1acaa14903d6624c2d738337a6aeb9802903a0a5 100644 (file)
@@ -117,7 +117,7 @@ PM support:
                implemented") error.  You should also try to make sure that your
                driver uses as little power as possible when it's not doing
                anything.  For the driver testing instructions see
-               Documentation/power/drivers-testing.txt and for a relatively
+               Documentation/power/drivers-testing.rst and for a relatively
                complete overview of the power management issues related to
                drivers see :ref:`Documentation/driver-api/pm/devices.rst <driverapi_pm_devices>`.
 
index 197d81f4b83687be902cfbf985de0ea22422ee0d..d97207b9accb91e9d2c967933cc7e2f5b8e9b1b1 100644 (file)
@@ -22,7 +22,7 @@ the highest.
 
 The actual EM used by EAS is _not_ maintained by the scheduler, but by a
 dedicated framework. For details about this framework and what it provides,
-please refer to its documentation (see Documentation/power/energy-model.txt).
+please refer to its documentation (see Documentation/power/energy-model.rst).
 
 
 2. Background and Terminology
@@ -81,7 +81,7 @@ through the arch_scale_cpu_capacity() callback.
 
 The rest of platform knowledge used by EAS is directly read from the Energy
 Model (EM) framework. The EM of a platform is composed of a power cost table
-per 'performance domain' in the system (see Documentation/power/energy-model.txt
+per 'performance domain' in the system (see Documentation/power/energy-model.rst
 for futher details about performance domains).
 
 The scheduler manages references to the EM objects in the topology code when the
@@ -352,7 +352,7 @@ could be amended in the future if proven otherwise.
 EAS uses the EM of a platform to estimate the impact of scheduling decisions on
 energy. So, your platform must provide power cost tables to the EM framework in
 order to make EAS start. To do so, please refer to documentation of the
-independent EM framework in Documentation/power/energy-model.txt.
+independent EM framework in Documentation/power/energy-model.rst.
 
 Please also note that the scheduling domains need to be re-built after the
 EM has been registered in order to start EAS.
index f07e38094b407110580986f1fee71c0908ee08f6..1a660a39e3c017ae18a1360e8c87a75b87b992ed 100644 (file)
@@ -151,7 +151,7 @@ At the runtime you can disable idle states with below methods:
 
 It is possible to disable CPU idle states by way of the PM QoS
 subsystem, more specifically by using the "/dev/cpu_dma_latency"
-interface (see Documentation/power/pm_qos_interface.txt for more
+interface (see Documentation/power/pm_qos_interface.rst for more
 details).  As specified in the PM QoS documentation the requested
 parameter will stay in effect until the file descriptor is released.
 For example:
index 72c6cd935821d9ed6941f465f8530763507391cc..f1c3906c69a8a41d2b5bd1e5f349f2c873e028ab 100644 (file)
@@ -97,7 +97,7 @@ Linux 2.6:
                函数定义成返回 -ENOSYS(功能未实现)错误。你还应该尝试确
                保你的驱动在什么都不干的情况下将耗电降到最低。要获得驱动
                程序测试的指导,请参阅
-               Documentation/power/drivers-testing.txt。有关驱动程序电
+               Documentation/power/drivers-testing.rst。有关驱动程序电
                源管理问题相对全面的概述,请参阅
                Documentation/driver-api/pm/devices.rst。
 
index 9c382053ce6aaf696537cbd591bf1c5909fbd1af..5a6137df3f0ef41512c5072ade43f9812e2c1b4e 100644 (file)
@@ -6446,7 +6446,7 @@ M:        "Rafael J. Wysocki" <rjw@rjwysocki.net>
 M:     Pavel Machek <pavel@ucw.cz>
 L:     linux-pm@vger.kernel.org
 S:     Supported
-F:     Documentation/power/freezing-of-tasks.txt
+F:     Documentation/power/freezing-of-tasks.rst
 F:     include/linux/freezer.h
 F:     kernel/freezer.c
 
@@ -11764,7 +11764,7 @@ S:      Maintained
 T:     git git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm.git
 F:     drivers/opp/
 F:     include/linux/pm_opp.h
-F:     Documentation/power/opp.txt
+F:     Documentation/power/opp.rst
 F:     Documentation/devicetree/bindings/opp/
 
 OPL4 DRIVER
index 2bbbd4d1ba31de5c0431393247ac4279878eb13d..77a724771dbb46254b734f2a2a1eb26f96bccbe6 100644 (file)
@@ -2447,7 +2447,7 @@ menuconfig APM
          machines with more than one CPU.
 
          In order to use APM, you will need supporting software. For location
-         and more information, read <file:Documentation/power/apm-acpi.txt>
+         and more information, read <file:Documentation/power/apm-acpi.rst>
          and the Battery Powered Linux mini-HOWTO, available from
          <http://www.tldp.org/docs.html#howto>.
 
index 066fd2a1285197eda197f53cd5d12603bc9debbd..10d040e2e807681f293f8ba6109e81d8b6405abc 100644 (file)
@@ -1175,7 +1175,7 @@ struct skl_wm_params {
  * to be disabled. This shouldn't happen and we'll print some error messages in
  * case it happens.
  *
- * For more, read the Documentation/power/runtime_pm.txt.
+ * For more, read the Documentation/power/runtime_pm.rst.
  */
 struct i915_runtime_pm {
        atomic_t wakeref_count;
index a7fbb93f302cefd912671ad8ac1f24171251d58e..1f64a3d46c8a2b480f1f02b6c68f31e53eda4fda 100644 (file)
@@ -10,4 +10,4 @@ config PM_OPP
          OPP layer organizes the data internally using device pointers
          representing individual voltage domains and provides SOC
          implementations a ready to use framework to manage OPPs.
-         For more information, read <file:Documentation/power/opp.txt>
+         For more information, read <file:Documentation/power/opp.rst>
index f7033ecf6d0b71549a424f1c667e39e31107dff4..11f9c875b028b6a7913fda3b7e4e2ff751316110 100644 (file)
@@ -607,7 +607,7 @@ int power_supply_get_battery_info(struct power_supply *psy,
 
        /* The property and field names below must correspond to elements
         * in enum power_supply_property. For reasoning, see
-        * Documentation/power/power_supply_class.txt.
+        * Documentation/power/power_supply_class.rst.
         */
 
        of_property_read_u32(battery_np, "energy-full-design-microwatt-hours",
index c7eef32e7739e5b5183fb59df24bd35fe04efc0d..5b8328a99b2aaa4295f4eadf763657c69c0fee24 100644 (file)
@@ -52,7 +52,7 @@
  *                irq line disabled until the threaded handler has been run.
  * IRQF_NO_SUSPEND - Do not disable this IRQ during suspend.  Does not guarantee
  *                   that this interrupt will wake the system from a suspended
- *                   state.  See Documentation/power/suspend-and-interrupts.txt
+ *                   state.  See Documentation/power/suspend-and-interrupts.rst
  * IRQF_FORCE_RESUME - Force enable it on resume even if IRQF_NO_SUSPEND is set
  * IRQF_NO_THREAD - Interrupt cannot be threaded
  * IRQF_EARLY_RESUME - Resume IRQ early during syscore instead of at device
index b74b2a4e6df241f54f89a96fd64913eafc340f0a..3d9a167ca5c309c7d6a990e1753f8347f62d51eb 100644 (file)
@@ -807,7 +807,7 @@ struct module;
  * @suspend_late: Put device into low power state.
  * @resume_early: Wake device from low power state.
  * @resume:    Wake device from low power state.
- *             (Please see Documentation/power/pci.txt for descriptions
+ *             (Please see Documentation/power/pci.rst for descriptions
  *             of PCI Power Management and the related functions.)
  * @shutdown:  Hook into reboot_notifier_list (kernel/sys.c).
  *             Intended to stop any idling DMA operations.
index 66c19a65a514087f8d31752bc90711796cd24299..c14ad8bc1a41e23de0f214e3b607534490eb4d6e 100644 (file)
@@ -284,7 +284,7 @@ typedef struct pm_message {
  * actions to be performed by a device driver's callbacks generally depend on
  * the platform and subsystem the device belongs to.
  *
- * Refer to Documentation/power/runtime_pm.txt for more information about the
+ * Refer to Documentation/power/runtime_pm.rst for more information about the
  * role of the @runtime_suspend(), @runtime_resume() and @runtime_idle()
  * callbacks in device runtime power management.
  */
index 9bbaaab14b36efc189c53152bb4a418872b5fe17..7a4dda9e530929f350699b028ae3a57ee8fc72b3 100644 (file)
@@ -65,7 +65,7 @@ config HIBERNATION
          need to run mkswap against the swap partition used for the suspend.
 
          It also works with swap files to a limited extent (for details see
-         <file:Documentation/power/swsusp-and-swap-files.txt>).
+         <file:Documentation/power/swsusp-and-swap-files.rst>).
 
          Right now you may boot without resuming and resume later but in the
          meantime you cannot use the swap partition(s)/file(s) involved in
@@ -74,7 +74,7 @@ config HIBERNATION
          MOUNT any journaled filesystems mounted before the suspend or they
          will get corrupted in a nasty way.
 
-         For more information take a look at <file:Documentation/power/swsusp.txt>.
+         For more information take a look at <file:Documentation/power/swsusp.rst>.
 
 config ARCH_SAVE_PAGE_KEYS
        bool
@@ -255,7 +255,7 @@ config APM_EMULATION
          notification of APM "events" (e.g. battery status change).
 
          In order to use APM, you will need supporting software. For location
-         and more information, read <file:Documentation/power/apm-acpi.txt>
+         and more information, read <file:Documentation/power/apm-acpi.rst>
          and the Battery Powered Linux mini-HOWTO, available from
          <http://www.tldp.org/docs.html#howto>.
 
index 41722046b9370c1861a51787dceabfe2b6215274..0cd26289bfbcad46faea5969facdbb30b71ef204 100644 (file)
@@ -165,7 +165,7 @@ config CFG80211_DEFAULT_PS
 
          If this causes your applications to misbehave you should fix your
          applications instead -- they need to register their network
-         latency requirement, see Documentation/power/pm_qos_interface.txt.
+         latency requirement, see Documentation/power/pm_qos_interface.rst.
 
 config CFG80211_DEBUGFS
        bool "cfg80211 DebugFS entries"