net: filter: BPF 'JIT' compiler for PPC64
authorMatt Evans <matt@ozlabs.org>
Wed, 20 Jul 2011 15:51:00 +0000 (15:51 +0000)
committerDavid S. Miller <davem@davemloft.net>
Thu, 21 Jul 2011 19:38:32 +0000 (12:38 -0700)
An implementation of a code generator for BPF programs to speed up packet
filtering on PPC64, inspired by Eric Dumazet's x86-64 version.

Filter code is generated as an ABI-compliant function in module_alloc()'d mem
with stackframe & prologue/epilogue generated if required (simple filters don't
need anything more than an li/blr).  The filter's local variables, M[], live in
registers.  Supports all BPF opcodes, although "complicated" loads from negative
packet offsets (e.g. SKF_LL_OFF) are not yet supported.

There are a couple of further optimisations left for future work; many-pass
assembly with branch-reach reduction and a register allocator to push M[]
variables into volatile registers would improve the code quality further.

This currently supports big-endian 64-bit PowerPC only (but is fairly simple
to port to PPC32 or LE!).

Enabled in the same way as x86-64:

echo 1 > /proc/sys/net/core/bpf_jit_enable

Or, enabled with extra debug output:

echo 2 > /proc/sys/net/core/bpf_jit_enable

Signed-off-by: Matt Evans <matt@ozlabs.org>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
arch/powerpc/Kconfig
arch/powerpc/Makefile
arch/powerpc/include/asm/ppc-opcode.h
arch/powerpc/net/Makefile [new file with mode: 0644]
arch/powerpc/net/bpf_jit.h [new file with mode: 0644]
arch/powerpc/net/bpf_jit_64.S [new file with mode: 0644]
arch/powerpc/net/bpf_jit_comp.c [new file with mode: 0644]

index 2729c6663d8a79c42705b9f81828e6ee6d6f5dd0..39860fce97dfc0d976c6ed1ad589195fa3fe346b 100644 (file)
@@ -134,6 +134,7 @@ config PPC
        select GENERIC_IRQ_SHOW_LEVEL
        select HAVE_RCU_TABLE_FREE if SMP
        select HAVE_SYSCALL_TRACEPOINTS
+       select HAVE_BPF_JIT if PPC64
 
 config EARLY_PRINTK
        bool
index b7212b619c52377ddeb471cf8e32f6080522cafa..b94740f36b1a9f9e3378027b51bf080efa6a558e 100644 (file)
@@ -154,7 +154,8 @@ core-y                              += arch/powerpc/kernel/ \
                                   arch/powerpc/lib/ \
                                   arch/powerpc/sysdev/ \
                                   arch/powerpc/platforms/ \
-                                  arch/powerpc/math-emu/
+                                  arch/powerpc/math-emu/ \
+                                  arch/powerpc/net/
 core-$(CONFIG_XMON)            += arch/powerpc/xmon/
 core-$(CONFIG_KVM)             += arch/powerpc/kvm/
 
index e472659d906c3203e5da6be8b8e1d3baa9fa967c..e980faae4225098d37e087d502bfb70166d9ea29 100644 (file)
 #define PPC_INST_ERATSX                        0x7c000126
 #define PPC_INST_ERATSX_DOT            0x7c000127
 
+/* Misc instructions for BPF compiler */
+#define PPC_INST_LD                    0xe8000000
+#define PPC_INST_LHZ                   0xa0000000
+#define PPC_INST_LWZ                   0x80000000
+#define PPC_INST_STD                   0xf8000000
+#define PPC_INST_STDU                  0xf8000001
+#define PPC_INST_MFLR                  0x7c0802a6
+#define PPC_INST_MTLR                  0x7c0803a6
+#define PPC_INST_CMPWI                 0x2c000000
+#define PPC_INST_CMPDI                 0x2c200000
+#define PPC_INST_CMPLW                 0x7c000040
+#define PPC_INST_CMPLWI                        0x28000000
+#define PPC_INST_ADDI                  0x38000000
+#define PPC_INST_ADDIS                 0x3c000000
+#define PPC_INST_ADD                   0x7c000214
+#define PPC_INST_SUB                   0x7c000050
+#define PPC_INST_BLR                   0x4e800020
+#define PPC_INST_BLRL                  0x4e800021
+#define PPC_INST_MULLW                 0x7c0001d6
+#define PPC_INST_MULHWU                        0x7c000016
+#define PPC_INST_MULLI                 0x1c000000
+#define PPC_INST_DIVWU                 0x7c0003d6
+#define PPC_INST_RLWINM                        0x54000000
+#define PPC_INST_RLDICR                        0x78000004
+#define PPC_INST_SLW                   0x7c000030
+#define PPC_INST_SRW                   0x7c000430
+#define PPC_INST_AND                   0x7c000038
+#define PPC_INST_ANDDOT                        0x7c000039
+#define PPC_INST_OR                    0x7c000378
+#define PPC_INST_ANDI                  0x70000000
+#define PPC_INST_ORI                   0x60000000
+#define PPC_INST_ORIS                  0x64000000
+#define PPC_INST_NEG                   0x7c0000d0
+#define PPC_INST_BRANCH                        0x48000000
+#define PPC_INST_BRANCH_COND           0x40800000
+
 /* macros to insert fields into opcodes */
 #define __PPC_RA(a)    (((a) & 0x1f) << 16)
 #define __PPC_RB(b)    (((b) & 0x1f) << 11)
 #define __PPC_T_TLB(t) (((t) & 0x3) << 21)
 #define __PPC_WC(w)    (((w) & 0x3) << 21)
 #define __PPC_WS(w)    (((w) & 0x1f) << 11)
+#define __PPC_SH(s)    __PPC_WS(s)
+#define __PPC_MB(s)    (((s) & 0x1f) << 6)
+#define __PPC_ME(s)    (((s) & 0x1f) << 1)
+#define __PPC_BI(s)    (((s) & 0x1f) << 16)
 
 /*
  * Only use the larx hint bit on 64bit CPUs. e500v1/v2 based CPUs will treat a
diff --git a/arch/powerpc/net/Makefile b/arch/powerpc/net/Makefile
new file mode 100644 (file)
index 0000000..266b395
--- /dev/null
@@ -0,0 +1,4 @@
+#
+# Arch-specific network modules
+#
+obj-$(CONFIG_BPF_JIT) += bpf_jit_64.o bpf_jit_comp.o
diff --git a/arch/powerpc/net/bpf_jit.h b/arch/powerpc/net/bpf_jit.h
new file mode 100644 (file)
index 0000000..af1ab5e
--- /dev/null
@@ -0,0 +1,227 @@
+/* bpf_jit.h: BPF JIT compiler for PPC64
+ *
+ * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; version 2
+ * of the License.
+ */
+#ifndef _BPF_JIT_H
+#define _BPF_JIT_H
+
+#define BPF_PPC_STACK_LOCALS   32
+#define BPF_PPC_STACK_BASIC    (48+64)
+#define BPF_PPC_STACK_SAVE     (18*8)
+#define BPF_PPC_STACKFRAME     (BPF_PPC_STACK_BASIC+BPF_PPC_STACK_LOCALS+ \
+                                BPF_PPC_STACK_SAVE)
+#define BPF_PPC_SLOWPATH_FRAME (48+64)
+
+/*
+ * Generated code register usage:
+ *
+ * As normal PPC C ABI (e.g. r1=sp, r2=TOC), with:
+ *
+ * skb         r3      (Entry parameter)
+ * A register  r4
+ * X register  r5
+ * addr param  r6
+ * r7-r10      scratch
+ * skb->data   r14
+ * skb headlen r15     (skb->len - skb->data_len)
+ * m[0]                r16
+ * m[...]      ...
+ * m[15]       r31
+ */
+#define r_skb          3
+#define r_ret          3
+#define r_A            4
+#define r_X            5
+#define r_addr         6
+#define r_scratch1     7
+#define r_D            14
+#define r_HL           15
+#define r_M            16
+
+#ifndef __ASSEMBLY__
+
+/*
+ * Assembly helpers from arch/powerpc/net/bpf_jit.S:
+ */
+extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
+
+#define FUNCTION_DESCR_SIZE    24
+
+/*
+ * 16-bit immediate helper macros: HA() is for use with sign-extending instrs
+ * (e.g. LD, ADDI).  If the bottom 16 bits is "-ve", add another bit into the
+ * top half to negate the effect (i.e. 0xffff + 1 = 0x(1)0000).
+ */
+#define IMM_H(i)               ((uintptr_t)(i)>>16)
+#define IMM_HA(i)              (((uintptr_t)(i)>>16) +                       \
+                                (((uintptr_t)(i) & 0x8000) >> 15))
+#define IMM_L(i)               ((uintptr_t)(i) & 0xffff)
+
+#define PLANT_INSTR(d, idx, instr)                                           \
+       do { if (d) { (d)[idx] = instr; } idx++; } while (0)
+#define EMIT(instr)            PLANT_INSTR(image, ctx->idx, instr)
+
+#define PPC_NOP()              EMIT(PPC_INST_NOP)
+#define PPC_BLR()              EMIT(PPC_INST_BLR)
+#define PPC_BLRL()             EMIT(PPC_INST_BLRL)
+#define PPC_MTLR(r)            EMIT(PPC_INST_MTLR | __PPC_RT(r))
+#define PPC_ADDI(d, a, i)      EMIT(PPC_INST_ADDI | __PPC_RT(d) |            \
+                                    __PPC_RA(a) | IMM_L(i))
+#define PPC_MR(d, a)           PPC_OR(d, a, a)
+#define PPC_LI(r, i)           PPC_ADDI(r, 0, i)
+#define PPC_ADDIS(d, a, i)     EMIT(PPC_INST_ADDIS |                         \
+                                    __PPC_RS(d) | __PPC_RA(a) | IMM_L(i))
+#define PPC_LIS(r, i)          PPC_ADDIS(r, 0, i)
+#define PPC_STD(r, base, i)    EMIT(PPC_INST_STD | __PPC_RS(r) |             \
+                                    __PPC_RA(base) | ((i) & 0xfffc))
+
+#define PPC_LD(r, base, i)     EMIT(PPC_INST_LD | __PPC_RT(r) |              \
+                                    __PPC_RA(base) | IMM_L(i))
+#define PPC_LWZ(r, base, i)    EMIT(PPC_INST_LWZ | __PPC_RT(r) |             \
+                                    __PPC_RA(base) | IMM_L(i))
+#define PPC_LHZ(r, base, i)    EMIT(PPC_INST_LHZ | __PPC_RT(r) |             \
+                                    __PPC_RA(base) | IMM_L(i))
+/* Convenience helpers for the above with 'far' offsets: */
+#define PPC_LD_OFFS(r, base, i) do { if ((i) < 32768) PPC_LD(r, base, i);     \
+               else {  PPC_ADDIS(r, base, IMM_HA(i));                        \
+                       PPC_LD(r, r, IMM_L(i)); } } while(0)
+
+#define PPC_LWZ_OFFS(r, base, i) do { if ((i) < 32768) PPC_LWZ(r, base, i);   \
+               else {  PPC_ADDIS(r, base, IMM_HA(i));                        \
+                       PPC_LWZ(r, r, IMM_L(i)); } } while(0)
+
+#define PPC_LHZ_OFFS(r, base, i) do { if ((i) < 32768) PPC_LHZ(r, base, i);   \
+               else {  PPC_ADDIS(r, base, IMM_HA(i));                        \
+                       PPC_LHZ(r, r, IMM_L(i)); } } while(0)
+
+#define PPC_CMPWI(a, i)                EMIT(PPC_INST_CMPWI | __PPC_RA(a) | IMM_L(i))
+#define PPC_CMPDI(a, i)                EMIT(PPC_INST_CMPDI | __PPC_RA(a) | IMM_L(i))
+#define PPC_CMPLWI(a, i)       EMIT(PPC_INST_CMPLWI | __PPC_RA(a) | IMM_L(i))
+#define PPC_CMPLW(a, b)                EMIT(PPC_INST_CMPLW | __PPC_RA(a) | __PPC_RB(b))
+
+#define PPC_SUB(d, a, b)       EMIT(PPC_INST_SUB | __PPC_RT(d) |             \
+                                    __PPC_RB(a) | __PPC_RA(b))
+#define PPC_ADD(d, a, b)       EMIT(PPC_INST_ADD | __PPC_RT(d) |             \
+                                    __PPC_RA(a) | __PPC_RB(b))
+#define PPC_MUL(d, a, b)       EMIT(PPC_INST_MULLW | __PPC_RT(d) |           \
+                                    __PPC_RA(a) | __PPC_RB(b))
+#define PPC_MULHWU(d, a, b)    EMIT(PPC_INST_MULHWU | __PPC_RT(d) |          \
+                                    __PPC_RA(a) | __PPC_RB(b))
+#define PPC_MULI(d, a, i)      EMIT(PPC_INST_MULLI | __PPC_RT(d) |           \
+                                    __PPC_RA(a) | IMM_L(i))
+#define PPC_DIVWU(d, a, b)     EMIT(PPC_INST_DIVWU | __PPC_RT(d) |           \
+                                    __PPC_RA(a) | __PPC_RB(b))
+#define PPC_AND(d, a, b)       EMIT(PPC_INST_AND | __PPC_RA(d) |             \
+                                    __PPC_RS(a) | __PPC_RB(b))
+#define PPC_ANDI(d, a, i)      EMIT(PPC_INST_ANDI | __PPC_RA(d) |            \
+                                    __PPC_RS(a) | IMM_L(i))
+#define PPC_AND_DOT(d, a, b)   EMIT(PPC_INST_ANDDOT | __PPC_RA(d) |          \
+                                    __PPC_RS(a) | __PPC_RB(b))
+#define PPC_OR(d, a, b)                EMIT(PPC_INST_OR | __PPC_RA(d) |              \
+                                    __PPC_RS(a) | __PPC_RB(b))
+#define PPC_ORI(d, a, i)       EMIT(PPC_INST_ORI | __PPC_RA(d) |             \
+                                    __PPC_RS(a) | IMM_L(i))
+#define PPC_ORIS(d, a, i)      EMIT(PPC_INST_ORIS | __PPC_RA(d) |            \
+                                    __PPC_RS(a) | IMM_L(i))
+#define PPC_SLW(d, a, s)       EMIT(PPC_INST_SLW | __PPC_RA(d) |             \
+                                    __PPC_RS(a) | __PPC_RB(s))
+#define PPC_SRW(d, a, s)       EMIT(PPC_INST_SRW | __PPC_RA(d) |             \
+                                    __PPC_RS(a) | __PPC_RB(s))
+/* slwi = rlwinm Rx, Ry, n, 0, 31-n */
+#define PPC_SLWI(d, a, i)      EMIT(PPC_INST_RLWINM | __PPC_RA(d) |          \
+                                    __PPC_RS(a) | __PPC_SH(i) |              \
+                                    __PPC_MB(0) | __PPC_ME(31-(i)))
+/* srwi = rlwinm Rx, Ry, 32-n, n, 31 */
+#define PPC_SRWI(d, a, i)      EMIT(PPC_INST_RLWINM | __PPC_RA(d) |          \
+                                    __PPC_RS(a) | __PPC_SH(32-(i)) |         \
+                                    __PPC_MB(i) | __PPC_ME(31))
+/* sldi = rldicr Rx, Ry, n, 63-n */
+#define PPC_SLDI(d, a, i)      EMIT(PPC_INST_RLDICR | __PPC_RA(d) |          \
+                                    __PPC_RS(a) | __PPC_SH(i) |              \
+                                    __PPC_MB(63-(i)) | (((i) & 0x20) >> 4))
+#define PPC_NEG(d, a)          EMIT(PPC_INST_NEG | __PPC_RT(d) | __PPC_RA(a))
+
+/* Long jump; (unconditional 'branch') */
+#define PPC_JMP(dest)          EMIT(PPC_INST_BRANCH |                        \
+                                    (((dest) - (ctx->idx * 4)) & 0x03fffffc))
+/* "cond" here covers BO:BI fields. */
+#define PPC_BCC_SHORT(cond, dest)      EMIT(PPC_INST_BRANCH_COND |           \
+                                            (((cond) & 0x3ff) << 16) |       \
+                                            (((dest) - (ctx->idx * 4)) &     \
+                                             0xfffc))
+#define PPC_LI32(d, i)         do { PPC_LI(d, IMM_L(i));                     \
+               if ((u32)(uintptr_t)(i) >= 32768) {                           \
+                       PPC_ADDIS(d, d, IMM_HA(i));                           \
+               } } while(0)
+#define PPC_LI64(d, i)         do {                                          \
+               if (!((uintptr_t)(i) & 0xffffffff00000000ULL))                \
+                       PPC_LI32(d, i);                                       \
+               else {                                                        \
+                       PPC_LIS(d, ((uintptr_t)(i) >> 48));                   \
+                       if ((uintptr_t)(i) & 0x0000ffff00000000ULL)           \
+                               PPC_ORI(d, d,                                 \
+                                       ((uintptr_t)(i) >> 32) & 0xffff);     \
+                       PPC_SLDI(d, d, 32);                                   \
+                       if ((uintptr_t)(i) & 0x00000000ffff0000ULL)           \
+                               PPC_ORIS(d, d,                                \
+                                        ((uintptr_t)(i) >> 16) & 0xffff);    \
+                       if ((uintptr_t)(i) & 0x000000000000ffffULL)           \
+                               PPC_ORI(d, d, (uintptr_t)(i) & 0xffff);       \
+               } } while (0);
+
+static inline bool is_nearbranch(int offset)
+{
+       return (offset < 32768) && (offset >= -32768);
+}
+
+/*
+ * The fly in the ointment of code size changing from pass to pass is
+ * avoided by padding the short branch case with a NOP.         If code size differs
+ * with different branch reaches we will have the issue of code moving from
+ * one pass to the next and will need a few passes to converge on a stable
+ * state.
+ */
+#define PPC_BCC(cond, dest)    do {                                          \
+               if (is_nearbranch((dest) - (ctx->idx * 4))) {                 \
+                       PPC_BCC_SHORT(cond, dest);                            \
+                       PPC_NOP();                                            \
+               } else {                                                      \
+                       /* Flip the 'T or F' bit to invert comparison */      \
+                       PPC_BCC_SHORT(cond ^ COND_CMP_TRUE, (ctx->idx+2)*4);  \
+                       PPC_JMP(dest);                                        \
+               } } while(0)
+
+/* To create a branch condition, select a bit of cr0... */
+#define CR0_LT         0
+#define CR0_GT         1
+#define CR0_EQ         2
+/* ...and modify BO[3] */
+#define COND_CMP_TRUE  0x100
+#define COND_CMP_FALSE 0x000
+/* Together, they make all required comparisons: */
+#define COND_GT                (CR0_GT | COND_CMP_TRUE)
+#define COND_GE                (CR0_LT | COND_CMP_FALSE)
+#define COND_EQ                (CR0_EQ | COND_CMP_TRUE)
+#define COND_NE                (CR0_EQ | COND_CMP_FALSE)
+#define COND_LT                (CR0_LT | COND_CMP_TRUE)
+
+#define SEEN_DATAREF 0x10000 /* might call external helpers */
+#define SEEN_XREG    0x20000 /* X reg is used */
+#define SEEN_MEM     0x40000 /* SEEN_MEM+(1<<n) = use mem[n] for temporary
+                             * storage */
+#define SEEN_MEM_MSK 0x0ffff
+
+struct codegen_context {
+       unsigned int seen;
+       unsigned int idx;
+       int pc_ret0; /* bpf index of first RET #0 instruction (if any) */
+};
+
+#endif
+
+#endif
diff --git a/arch/powerpc/net/bpf_jit_64.S b/arch/powerpc/net/bpf_jit_64.S
new file mode 100644 (file)
index 0000000..ff4506e
--- /dev/null
@@ -0,0 +1,138 @@
+/* bpf_jit.S: Packet/header access helper functions
+ * for PPC64 BPF compiler.
+ *
+ * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; version 2
+ * of the License.
+ */
+
+#include <asm/ppc_asm.h>
+#include "bpf_jit.h"
+
+/*
+ * All of these routines are called directly from generated code,
+ * whose register usage is:
+ *
+ * r3          skb
+ * r4,r5       A,X
+ * r6          *** address parameter to helper ***
+ * r7-r10      scratch
+ * r14         skb->data
+ * r15         skb headlen
+ * r16-31      M[]
+ */
+
+/*
+ * To consider: These helpers are so small it could be better to just
+ * generate them inline.  Inline code can do the simple headlen check
+ * then branch directly to slow_path_XXX if required.  (In fact, could
+ * load a spare GPR with the address of slow_path_generic and pass size
+ * as an argument, making the call site a mtlr, li and bllr.)
+ *
+ * Technically, the "is addr < 0" check is unnecessary & slowing down
+ * the ABS path, as it's statically checked on generation.
+ */
+       .globl  sk_load_word
+sk_load_word:
+       cmpdi   r_addr, 0
+       blt     bpf_error
+       /* Are we accessing past headlen? */
+       subi    r_scratch1, r_HL, 4
+       cmpd    r_scratch1, r_addr
+       blt     bpf_slow_path_word
+       /* Nope, just hitting the header.  cr0 here is eq or gt! */
+       lwzx    r_A, r_D, r_addr
+       /* When big endian we don't need to byteswap. */
+       blr     /* Return success, cr0 != LT */
+
+       .globl  sk_load_half
+sk_load_half:
+       cmpdi   r_addr, 0
+       blt     bpf_error
+       subi    r_scratch1, r_HL, 2
+       cmpd    r_scratch1, r_addr
+       blt     bpf_slow_path_half
+       lhzx    r_A, r_D, r_addr
+       blr
+
+       .globl  sk_load_byte
+sk_load_byte:
+       cmpdi   r_addr, 0
+       blt     bpf_error
+       cmpd    r_HL, r_addr
+       ble     bpf_slow_path_byte
+       lbzx    r_A, r_D, r_addr
+       blr
+
+/*
+ * BPF_S_LDX_B_MSH: ldxb  4*([offset]&0xf)
+ * r_addr is the offset value, already known positive
+ */
+       .globl sk_load_byte_msh
+sk_load_byte_msh:
+       cmpd    r_HL, r_addr
+       ble     bpf_slow_path_byte_msh
+       lbzx    r_X, r_D, r_addr
+       rlwinm  r_X, r_X, 2, 32-4-2, 31-2
+       blr
+
+bpf_error:
+       /* Entered with cr0 = lt */
+       li      r3, 0
+       /* Generated code will 'blt epilogue', returning 0. */
+       blr
+
+/* Call out to skb_copy_bits:
+ * We'll need to back up our volatile regs first; we have
+ * local variable space at r1+(BPF_PPC_STACK_BASIC).
+ * Allocate a new stack frame here to remain ABI-compliant in
+ * stashing LR.
+ */
+#define bpf_slow_path_common(SIZE)                             \
+       mflr    r0;                                             \
+       std     r0, 16(r1);                                     \
+       /* R3 goes in parameter space of caller's frame */      \
+       std     r_skb, (BPF_PPC_STACKFRAME+48)(r1);             \
+       std     r_A, (BPF_PPC_STACK_BASIC+(0*8))(r1);           \
+       std     r_X, (BPF_PPC_STACK_BASIC+(1*8))(r1);           \
+       addi    r5, r1, BPF_PPC_STACK_BASIC+(2*8);              \
+       stdu    r1, -BPF_PPC_SLOWPATH_FRAME(r1);                \
+       /* R3 = r_skb, as passed */                             \
+       mr      r4, r_addr;                                     \
+       li      r6, SIZE;                                       \
+       bl      skb_copy_bits;                                  \
+       /* R3 = 0 on success */                                 \
+       addi    r1, r1, BPF_PPC_SLOWPATH_FRAME;                 \
+       ld      r0, 16(r1);                                     \
+       ld      r_A, (BPF_PPC_STACK_BASIC+(0*8))(r1);           \
+       ld      r_X, (BPF_PPC_STACK_BASIC+(1*8))(r1);           \
+       mtlr    r0;                                             \
+       cmpdi   r3, 0;                                          \
+       blt     bpf_error;      /* cr0 = LT */                  \
+       ld      r_skb, (BPF_PPC_STACKFRAME+48)(r1);             \
+       /* Great success! */
+
+bpf_slow_path_word:
+       bpf_slow_path_common(4)
+       /* Data value is on stack, and cr0 != LT */
+       lwz     r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
+       blr
+
+bpf_slow_path_half:
+       bpf_slow_path_common(2)
+       lhz     r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
+       blr
+
+bpf_slow_path_byte:
+       bpf_slow_path_common(1)
+       lbz     r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
+       blr
+
+bpf_slow_path_byte_msh:
+       bpf_slow_path_common(1)
+       lbz     r_X, BPF_PPC_STACK_BASIC+(2*8)(r1)
+       rlwinm  r_X, r_X, 2, 32-4-2, 31-2
+       blr
diff --git a/arch/powerpc/net/bpf_jit_comp.c b/arch/powerpc/net/bpf_jit_comp.c
new file mode 100644 (file)
index 0000000..73619d3
--- /dev/null
@@ -0,0 +1,694 @@
+/* bpf_jit_comp.c: BPF JIT compiler for PPC64
+ *
+ * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
+ *
+ * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; version 2
+ * of the License.
+ */
+#include <linux/moduleloader.h>
+#include <asm/cacheflush.h>
+#include <linux/netdevice.h>
+#include <linux/filter.h>
+#include "bpf_jit.h"
+
+#ifndef __BIG_ENDIAN
+/* There are endianness assumptions herein. */
+#error "Little-endian PPC not supported in BPF compiler"
+#endif
+
+int bpf_jit_enable __read_mostly;
+
+
+static inline void bpf_flush_icache(void *start, void *end)
+{
+       smp_wmb();
+       flush_icache_range((unsigned long)start, (unsigned long)end);
+}
+
+static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
+                                  struct codegen_context *ctx)
+{
+       int i;
+       const struct sock_filter *filter = fp->insns;
+
+       if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
+               /* Make stackframe */
+               if (ctx->seen & SEEN_DATAREF) {
+                       /* If we call any helpers (for loads), save LR */
+                       EMIT(PPC_INST_MFLR | __PPC_RT(0));
+                       PPC_STD(0, 1, 16);
+
+                       /* Back up non-volatile regs. */
+                       PPC_STD(r_D, 1, -(8*(32-r_D)));
+                       PPC_STD(r_HL, 1, -(8*(32-r_HL)));
+               }
+               if (ctx->seen & SEEN_MEM) {
+                       /*
+                        * Conditionally save regs r15-r31 as some will be used
+                        * for M[] data.
+                        */
+                       for (i = r_M; i < (r_M+16); i++) {
+                               if (ctx->seen & (1 << (i-r_M)))
+                                       PPC_STD(i, 1, -(8*(32-i)));
+                       }
+               }
+               EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
+                    (-BPF_PPC_STACKFRAME & 0xfffc));
+       }
+
+       if (ctx->seen & SEEN_DATAREF) {
+               /*
+                * If this filter needs to access skb data,
+                * prepare r_D and r_HL:
+                *  r_HL = skb->len - skb->data_len
+                *  r_D  = skb->data
+                */
+               PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
+                                                        data_len));
+               PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
+               PPC_SUB(r_HL, r_HL, r_scratch1);
+               PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
+       }
+
+       if (ctx->seen & SEEN_XREG) {
+               /*
+                * TODO: Could also detect whether first instr. sets X and
+                * avoid this (as below, with A).
+                */
+               PPC_LI(r_X, 0);
+       }
+
+       switch (filter[0].code) {
+       case BPF_S_RET_K:
+       case BPF_S_LD_W_LEN:
+       case BPF_S_ANC_PROTOCOL:
+       case BPF_S_ANC_IFINDEX:
+       case BPF_S_ANC_MARK:
+       case BPF_S_ANC_RXHASH:
+       case BPF_S_ANC_CPU:
+       case BPF_S_ANC_QUEUE:
+       case BPF_S_LD_W_ABS:
+       case BPF_S_LD_H_ABS:
+       case BPF_S_LD_B_ABS:
+               /* first instruction sets A register (or is RET 'constant') */
+               break;
+       default:
+               /* make sure we dont leak kernel information to user */
+               PPC_LI(r_A, 0);
+       }
+}
+
+static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
+{
+       int i;
+
+       if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
+               PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
+               if (ctx->seen & SEEN_DATAREF) {
+                       PPC_LD(0, 1, 16);
+                       PPC_MTLR(0);
+                       PPC_LD(r_D, 1, -(8*(32-r_D)));
+                       PPC_LD(r_HL, 1, -(8*(32-r_HL)));
+               }
+               if (ctx->seen & SEEN_MEM) {
+                       /* Restore any saved non-vol registers */
+                       for (i = r_M; i < (r_M+16); i++) {
+                               if (ctx->seen & (1 << (i-r_M)))
+                                       PPC_LD(i, 1, -(8*(32-i)));
+                       }
+               }
+       }
+       /* The RETs have left a return value in R3. */
+
+       PPC_BLR();
+}
+
+/* Assemble the body code between the prologue & epilogue. */
+static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
+                             struct codegen_context *ctx,
+                             unsigned int *addrs)
+{
+       const struct sock_filter *filter = fp->insns;
+       int flen = fp->len;
+       u8 *func;
+       unsigned int true_cond;
+       int i;
+
+       /* Start of epilogue code */
+       unsigned int exit_addr = addrs[flen];
+
+       for (i = 0; i < flen; i++) {
+               unsigned int K = filter[i].k;
+
+               /*
+                * addrs[] maps a BPF bytecode address into a real offset from
+                * the start of the body code.
+                */
+               addrs[i] = ctx->idx * 4;
+
+               switch (filter[i].code) {
+                       /*** ALU ops ***/
+               case BPF_S_ALU_ADD_X: /* A += X; */
+                       ctx->seen |= SEEN_XREG;
+                       PPC_ADD(r_A, r_A, r_X);
+                       break;
+               case BPF_S_ALU_ADD_K: /* A += K; */
+                       if (!K)
+                               break;
+                       PPC_ADDI(r_A, r_A, IMM_L(K));
+                       if (K >= 32768)
+                               PPC_ADDIS(r_A, r_A, IMM_HA(K));
+                       break;
+               case BPF_S_ALU_SUB_X: /* A -= X; */
+                       ctx->seen |= SEEN_XREG;
+                       PPC_SUB(r_A, r_A, r_X);
+                       break;
+               case BPF_S_ALU_SUB_K: /* A -= K */
+                       if (!K)
+                               break;
+                       PPC_ADDI(r_A, r_A, IMM_L(-K));
+                       if (K >= 32768)
+                               PPC_ADDIS(r_A, r_A, IMM_HA(-K));
+                       break;
+               case BPF_S_ALU_MUL_X: /* A *= X; */
+                       ctx->seen |= SEEN_XREG;
+                       PPC_MUL(r_A, r_A, r_X);
+                       break;
+               case BPF_S_ALU_MUL_K: /* A *= K */
+                       if (K < 32768)
+                               PPC_MULI(r_A, r_A, K);
+                       else {
+                               PPC_LI32(r_scratch1, K);
+                               PPC_MUL(r_A, r_A, r_scratch1);
+                       }
+                       break;
+               case BPF_S_ALU_DIV_X: /* A /= X; */
+                       ctx->seen |= SEEN_XREG;
+                       PPC_CMPWI(r_X, 0);
+                       if (ctx->pc_ret0 != -1) {
+                               PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
+                       } else {
+                               /*
+                                * Exit, returning 0; first pass hits here
+                                * (longer worst-case code size).
+                                */
+                               PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
+                               PPC_LI(r_ret, 0);
+                               PPC_JMP(exit_addr);
+                       }
+                       PPC_DIVWU(r_A, r_A, r_X);
+                       break;
+               case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
+                       PPC_LI32(r_scratch1, K);
+                       /* Top 32 bits of 64bit result -> A */
+                       PPC_MULHWU(r_A, r_A, r_scratch1);
+                       break;
+               case BPF_S_ALU_AND_X:
+                       ctx->seen |= SEEN_XREG;
+                       PPC_AND(r_A, r_A, r_X);
+                       break;
+               case BPF_S_ALU_AND_K:
+                       if (!IMM_H(K))
+                               PPC_ANDI(r_A, r_A, K);
+                       else {
+                               PPC_LI32(r_scratch1, K);
+                               PPC_AND(r_A, r_A, r_scratch1);
+                       }
+                       break;
+               case BPF_S_ALU_OR_X:
+                       ctx->seen |= SEEN_XREG;
+                       PPC_OR(r_A, r_A, r_X);
+                       break;
+               case BPF_S_ALU_OR_K:
+                       if (IMM_L(K))
+                               PPC_ORI(r_A, r_A, IMM_L(K));
+                       if (K >= 65536)
+                               PPC_ORIS(r_A, r_A, IMM_H(K));
+                       break;
+               case BPF_S_ALU_LSH_X: /* A <<= X; */
+                       ctx->seen |= SEEN_XREG;
+                       PPC_SLW(r_A, r_A, r_X);
+                       break;
+               case BPF_S_ALU_LSH_K:
+                       if (K == 0)
+                               break;
+                       else
+                               PPC_SLWI(r_A, r_A, K);
+                       break;
+               case BPF_S_ALU_RSH_X: /* A >>= X; */
+                       ctx->seen |= SEEN_XREG;
+                       PPC_SRW(r_A, r_A, r_X);
+                       break;
+               case BPF_S_ALU_RSH_K: /* A >>= K; */
+                       if (K == 0)
+                               break;
+                       else
+                               PPC_SRWI(r_A, r_A, K);
+                       break;
+               case BPF_S_ALU_NEG:
+                       PPC_NEG(r_A, r_A);
+                       break;
+               case BPF_S_RET_K:
+                       PPC_LI32(r_ret, K);
+                       if (!K) {
+                               if (ctx->pc_ret0 == -1)
+                                       ctx->pc_ret0 = i;
+                       }
+                       /*
+                        * If this isn't the very last instruction, branch to
+                        * the epilogue if we've stuff to clean up.  Otherwise,
+                        * if there's nothing to tidy, just return.  If we /are/
+                        * the last instruction, we're about to fall through to
+                        * the epilogue to return.
+                        */
+                       if (i != flen - 1) {
+                               /*
+                                * Note: 'seen' is properly valid only on pass
+                                * #2.  Both parts of this conditional are the
+                                * same instruction size though, meaning the
+                                * first pass will still correctly determine the
+                                * code size/addresses.
+                                */
+                               if (ctx->seen)
+                                       PPC_JMP(exit_addr);
+                               else
+                                       PPC_BLR();
+                       }
+                       break;
+               case BPF_S_RET_A:
+                       PPC_MR(r_ret, r_A);
+                       if (i != flen - 1) {
+                               if (ctx->seen)
+                                       PPC_JMP(exit_addr);
+                               else
+                                       PPC_BLR();
+                       }
+                       break;
+               case BPF_S_MISC_TAX: /* X = A */
+                       PPC_MR(r_X, r_A);
+                       break;
+               case BPF_S_MISC_TXA: /* A = X */
+                       ctx->seen |= SEEN_XREG;
+                       PPC_MR(r_A, r_X);
+                       break;
+
+                       /*** Constant loads/M[] access ***/
+               case BPF_S_LD_IMM: /* A = K */
+                       PPC_LI32(r_A, K);
+                       break;
+               case BPF_S_LDX_IMM: /* X = K */
+                       PPC_LI32(r_X, K);
+                       break;
+               case BPF_S_LD_MEM: /* A = mem[K] */
+                       PPC_MR(r_A, r_M + (K & 0xf));
+                       ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
+                       break;
+               case BPF_S_LDX_MEM: /* X = mem[K] */
+                       PPC_MR(r_X, r_M + (K & 0xf));
+                       ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
+                       break;
+               case BPF_S_ST: /* mem[K] = A */
+                       PPC_MR(r_M + (K & 0xf), r_A);
+                       ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
+                       break;
+               case BPF_S_STX: /* mem[K] = X */
+                       PPC_MR(r_M + (K & 0xf), r_X);
+                       ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
+                       break;
+               case BPF_S_LD_W_LEN: /* A = skb->len; */
+                       BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
+                       PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
+                       break;
+               case BPF_S_LDX_W_LEN: /* X = skb->len; */
+                       PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
+                       break;
+
+                       /*** Ancillary info loads ***/
+
+                       /* None of the BPF_S_ANC* codes appear to be passed by
+                        * sk_chk_filter().  The interpreter and the x86 BPF
+                        * compiler implement them so we do too -- they may be
+                        * planted in future.
+                        */
+               case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
+                       BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
+                                                 protocol) != 2);
+                       PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
+                                                         protocol));
+                       /* ntohs is a NOP with BE loads. */
+                       break;
+               case BPF_S_ANC_IFINDEX:
+                       PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
+                                                               dev));
+                       PPC_CMPDI(r_scratch1, 0);
+                       if (ctx->pc_ret0 != -1) {
+                               PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
+                       } else {
+                               /* Exit, returning 0; first pass hits here. */
+                               PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
+                               PPC_LI(r_ret, 0);
+                               PPC_JMP(exit_addr);
+                       }
+                       BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
+                                                 ifindex) != 4);
+                       PPC_LWZ_OFFS(r_A, r_scratch1,
+                                    offsetof(struct net_device, ifindex));
+                       break;
+               case BPF_S_ANC_MARK:
+                       BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
+                       PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
+                                                         mark));
+                       break;
+               case BPF_S_ANC_RXHASH:
+                       BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
+                       PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
+                                                         rxhash));
+                       break;
+               case BPF_S_ANC_QUEUE:
+                       BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
+                                                 queue_mapping) != 2);
+                       PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
+                                                         queue_mapping));
+                       break;
+               case BPF_S_ANC_CPU:
+#ifdef CONFIG_SMP
+                       /*
+                        * PACA ptr is r13:
+                        * raw_smp_processor_id() = local_paca->paca_index
+                        */
+                       BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
+                                                 paca_index) != 2);
+                       PPC_LHZ_OFFS(r_A, 13,
+                                    offsetof(struct paca_struct, paca_index));
+#else
+                       PPC_LI(r_A, 0);
+#endif
+                       break;
+
+                       /*** Absolute loads from packet header/data ***/
+               case BPF_S_LD_W_ABS:
+                       func = sk_load_word;
+                       goto common_load;
+               case BPF_S_LD_H_ABS:
+                       func = sk_load_half;
+                       goto common_load;
+               case BPF_S_LD_B_ABS:
+                       func = sk_load_byte;
+               common_load:
+                       /*
+                        * Load from [K].  Reference with the (negative)
+                        * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
+                        */
+                       ctx->seen |= SEEN_DATAREF;
+                       if ((int)K < 0)
+                               return -ENOTSUPP;
+                       PPC_LI64(r_scratch1, func);
+                       PPC_MTLR(r_scratch1);
+                       PPC_LI32(r_addr, K);
+                       PPC_BLRL();
+                       /*
+                        * Helper returns 'lt' condition on error, and an
+                        * appropriate return value in r3
+                        */
+                       PPC_BCC(COND_LT, exit_addr);
+                       break;
+
+                       /*** Indirect loads from packet header/data ***/
+               case BPF_S_LD_W_IND:
+                       func = sk_load_word;
+                       goto common_load_ind;
+               case BPF_S_LD_H_IND:
+                       func = sk_load_half;
+                       goto common_load_ind;
+               case BPF_S_LD_B_IND:
+                       func = sk_load_byte;
+               common_load_ind:
+                       /*
+                        * Load from [X + K].  Negative offsets are tested for
+                        * in the helper functions, and result in a 'ret 0'.
+                        */
+                       ctx->seen |= SEEN_DATAREF | SEEN_XREG;
+                       PPC_LI64(r_scratch1, func);
+                       PPC_MTLR(r_scratch1);
+                       PPC_ADDI(r_addr, r_X, IMM_L(K));
+                       if (K >= 32768)
+                               PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
+                       PPC_BLRL();
+                       /* If error, cr0.LT set */
+                       PPC_BCC(COND_LT, exit_addr);
+                       break;
+
+               case BPF_S_LDX_B_MSH:
+                       /*
+                        * x86 version drops packet (RET 0) when K<0, whereas
+                        * interpreter does allow K<0 (__load_pointer, special
+                        * ancillary data).  common_load returns ENOTSUPP if K<0,
+                        * so we fall back to interpreter & filter works.
+                        */
+                       func = sk_load_byte_msh;
+                       goto common_load;
+                       break;
+
+                       /*** Jump and branches ***/
+               case BPF_S_JMP_JA:
+                       if (K != 0)
+                               PPC_JMP(addrs[i + 1 + K]);
+                       break;
+
+               case BPF_S_JMP_JGT_K:
+               case BPF_S_JMP_JGT_X:
+                       true_cond = COND_GT;
+                       goto cond_branch;
+               case BPF_S_JMP_JGE_K:
+               case BPF_S_JMP_JGE_X:
+                       true_cond = COND_GE;
+                       goto cond_branch;
+               case BPF_S_JMP_JEQ_K:
+               case BPF_S_JMP_JEQ_X:
+                       true_cond = COND_EQ;
+                       goto cond_branch;
+               case BPF_S_JMP_JSET_K:
+               case BPF_S_JMP_JSET_X:
+                       true_cond = COND_NE;
+                       /* Fall through */
+               cond_branch:
+                       /* same targets, can avoid doing the test :) */
+                       if (filter[i].jt == filter[i].jf) {
+                               if (filter[i].jt > 0)
+                                       PPC_JMP(addrs[i + 1 + filter[i].jt]);
+                               break;
+                       }
+
+                       switch (filter[i].code) {
+                       case BPF_S_JMP_JGT_X:
+                       case BPF_S_JMP_JGE_X:
+                       case BPF_S_JMP_JEQ_X:
+                               ctx->seen |= SEEN_XREG;
+                               PPC_CMPLW(r_A, r_X);
+                               break;
+                       case BPF_S_JMP_JSET_X:
+                               ctx->seen |= SEEN_XREG;
+                               PPC_AND_DOT(r_scratch1, r_A, r_X);
+                               break;
+                       case BPF_S_JMP_JEQ_K:
+                       case BPF_S_JMP_JGT_K:
+                       case BPF_S_JMP_JGE_K:
+                               if (K < 32768)
+                                       PPC_CMPLWI(r_A, K);
+                               else {
+                                       PPC_LI32(r_scratch1, K);
+                                       PPC_CMPLW(r_A, r_scratch1);
+                               }
+                               break;
+                       case BPF_S_JMP_JSET_K:
+                               if (K < 32768)
+                                       /* PPC_ANDI is /only/ dot-form */
+                                       PPC_ANDI(r_scratch1, r_A, K);
+                               else {
+                                       PPC_LI32(r_scratch1, K);
+                                       PPC_AND_DOT(r_scratch1, r_A,
+                                                   r_scratch1);
+                               }
+                               break;
+                       }
+                       /* Sometimes branches are constructed "backward", with
+                        * the false path being the branch and true path being
+                        * a fallthrough to the next instruction.
+                        */
+                       if (filter[i].jt == 0)
+                               /* Swap the sense of the branch */
+                               PPC_BCC(true_cond ^ COND_CMP_TRUE,
+                                       addrs[i + 1 + filter[i].jf]);
+                       else {
+                               PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
+                               if (filter[i].jf != 0)
+                                       PPC_JMP(addrs[i + 1 + filter[i].jf]);
+                       }
+                       break;
+               default:
+                       /* The filter contains something cruel & unusual.
+                        * We don't handle it, but also there shouldn't be
+                        * anything missing from our list.
+                        */
+                       if (printk_ratelimit())
+                               pr_err("BPF filter opcode %04x (@%d) unsupported\n",
+                                      filter[i].code, i);
+                       return -ENOTSUPP;
+               }
+
+       }
+       /* Set end-of-body-code address for exit. */
+       addrs[i] = ctx->idx * 4;
+
+       return 0;
+}
+
+void bpf_jit_compile(struct sk_filter *fp)
+{
+       unsigned int proglen;
+       unsigned int alloclen;
+       u32 *image = NULL;
+       u32 *code_base;
+       unsigned int *addrs;
+       struct codegen_context cgctx;
+       int pass;
+       int flen = fp->len;
+
+       if (!bpf_jit_enable)
+               return;
+
+       addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
+       if (addrs == NULL)
+               return;
+
+       /*
+        * There are multiple assembly passes as the generated code will change
+        * size as it settles down, figuring out the max branch offsets/exit
+        * paths required.
+        *
+        * The range of standard conditional branches is +/- 32Kbytes.  Since
+        * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
+        * finish with 8 bytes/instruction.  Not feasible, so long jumps are
+        * used, distinct from short branches.
+        *
+        * Current:
+        *
+        * For now, both branch types assemble to 2 words (short branches padded
+        * with a NOP); this is less efficient, but assembly will always complete
+        * after exactly 3 passes:
+        *
+        * First pass: No code buffer; Program is "faux-generated" -- no code
+        * emitted but maximum size of output determined (and addrs[] filled
+        * in).  Also, we note whether we use M[], whether we use skb data, etc.
+        * All generation choices assumed to be 'worst-case', e.g. branches all
+        * far (2 instructions), return path code reduction not available, etc.
+        *
+        * Second pass: Code buffer allocated with size determined previously.
+        * Prologue generated to support features we have seen used.  Exit paths
+        * determined and addrs[] is filled in again, as code may be slightly
+        * smaller as a result.
+        *
+        * Third pass: Code generated 'for real', and branch destinations
+        * determined from now-accurate addrs[] map.
+        *
+        * Ideal:
+        *
+        * If we optimise this, near branches will be shorter.  On the
+        * first assembly pass, we should err on the side of caution and
+        * generate the biggest code.  On subsequent passes, branches will be
+        * generated short or long and code size will reduce.  With smaller
+        * code, more branches may fall into the short category, and code will
+        * reduce more.
+        *
+        * Finally, if we see one pass generate code the same size as the
+        * previous pass we have converged and should now generate code for
+        * real.  Allocating at the end will also save the memory that would
+        * otherwise be wasted by the (small) current code shrinkage.
+        * Preferably, we should do a small number of passes (e.g. 5) and if we
+        * haven't converged by then, get impatient and force code to generate
+        * as-is, even if the odd branch would be left long.  The chances of a
+        * long jump are tiny with all but the most enormous of BPF filter
+        * inputs, so we should usually converge on the third pass.
+        */
+
+       cgctx.idx = 0;
+       cgctx.seen = 0;
+       cgctx.pc_ret0 = -1;
+       /* Scouting faux-generate pass 0 */
+       if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
+               /* We hit something illegal or unsupported. */
+               goto out;
+
+       /*
+        * Pretend to build prologue, given the features we've seen.  This will
+        * update ctgtx.idx as it pretends to output instructions, then we can
+        * calculate total size from idx.
+        */
+       bpf_jit_build_prologue(fp, 0, &cgctx);
+       bpf_jit_build_epilogue(0, &cgctx);
+
+       proglen = cgctx.idx * 4;
+       alloclen = proglen + FUNCTION_DESCR_SIZE;
+       image = module_alloc(max_t(unsigned int, alloclen,
+                                  sizeof(struct work_struct)));
+       if (!image)
+               goto out;
+
+       code_base = image + (FUNCTION_DESCR_SIZE/4);
+
+       /* Code generation passes 1-2 */
+       for (pass = 1; pass < 3; pass++) {
+               /* Now build the prologue, body code & epilogue for real. */
+               cgctx.idx = 0;
+               bpf_jit_build_prologue(fp, code_base, &cgctx);
+               bpf_jit_build_body(fp, code_base, &cgctx, addrs);
+               bpf_jit_build_epilogue(code_base, &cgctx);
+
+               if (bpf_jit_enable > 1)
+                       pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
+                               proglen - (cgctx.idx * 4), cgctx.seen);
+       }
+
+       if (bpf_jit_enable > 1)
+               pr_info("flen=%d proglen=%u pass=%d image=%p\n",
+                      flen, proglen, pass, image);
+
+       if (image) {
+               if (bpf_jit_enable > 1)
+                       print_hex_dump(KERN_ERR, "JIT code: ",
+                                      DUMP_PREFIX_ADDRESS,
+                                      16, 1, code_base,
+                                      proglen, false);
+
+               bpf_flush_icache(code_base, code_base + (proglen/4));
+               /* Function descriptor nastiness: Address + TOC */
+               ((u64 *)image)[0] = (u64)code_base;
+               ((u64 *)image)[1] = local_paca->kernel_toc;
+               fp->bpf_func = (void *)image;
+       }
+out:
+       kfree(addrs);
+       return;
+}
+
+static void jit_free_defer(struct work_struct *arg)
+{
+       module_free(NULL, arg);
+}
+
+/* run from softirq, we must use a work_struct to call
+ * module_free() from process context
+ */
+void bpf_jit_free(struct sk_filter *fp)
+{
+       if (fp->bpf_func != sk_run_filter) {
+               struct work_struct *work = (struct work_struct *)fp->bpf_func;
+
+               INIT_WORK(work, jit_free_defer);
+               schedule_work(work);
+       }
+}