u8 sh1, sh2;
};
+/* "reciprocal_value" and "reciprocal_divide" together implement the basic
+ * version of the algorithm described in Figure 4.1 of the paper.
+ */
struct reciprocal_value reciprocal_value(u32 d);
static inline u32 reciprocal_divide(u32 a, struct reciprocal_value R)
return (t + ((a - t) >> R.sh1)) >> R.sh2;
}
+struct reciprocal_value_adv {
+ u32 m;
+ u8 sh, exp;
+ bool is_wide_m;
+};
+
+/* "reciprocal_value_adv" implements the advanced version of the algorithm
+ * described in Figure 4.2 of the paper except when "divisor > (1U << 31)" whose
+ * ceil(log2(d)) result will be 32 which then requires u128 divide on host. The
+ * exception case could be easily handled before calling "reciprocal_value_adv".
+ *
+ * The advanced version requires more complex calculation to get the reciprocal
+ * multiplier and other control variables, but then could reduce the required
+ * emulation operations.
+ *
+ * It makes no sense to use this advanced version for host divide emulation,
+ * those extra complexities for calculating multiplier etc could completely
+ * waive our saving on emulation operations.
+ *
+ * However, it makes sense to use it for JIT divide code generation for which
+ * we are willing to trade performance of JITed code with that of host. As shown
+ * by the following pseudo code, the required emulation operations could go down
+ * from 6 (the basic version) to 3 or 4.
+ *
+ * To use the result of "reciprocal_value_adv", suppose we want to calculate
+ * n/d, the pseudo C code will be:
+ *
+ * struct reciprocal_value_adv rvalue;
+ * u8 pre_shift, exp;
+ *
+ * // handle exception case.
+ * if (d >= (1U << 31)) {
+ * result = n >= d;
+ * return;
+ * }
+ *
+ * rvalue = reciprocal_value_adv(d, 32)
+ * exp = rvalue.exp;
+ * if (rvalue.is_wide_m && !(d & 1)) {
+ * // floor(log2(d & (2^32 -d)))
+ * pre_shift = fls(d & -d) - 1;
+ * rvalue = reciprocal_value_adv(d >> pre_shift, 32 - pre_shift);
+ * } else {
+ * pre_shift = 0;
+ * }
+ *
+ * // code generation starts.
+ * if (imm == 1U << exp) {
+ * result = n >> exp;
+ * } else if (rvalue.is_wide_m) {
+ * // pre_shift must be zero when reached here.
+ * t = (n * rvalue.m) >> 32;
+ * result = n - t;
+ * result >>= 1;
+ * result += t;
+ * result >>= rvalue.sh - 1;
+ * } else {
+ * if (pre_shift)
+ * result = n >> pre_shift;
+ * result = ((u64)result * rvalue.m) >> 32;
+ * result >>= rvalue.sh;
+ * }
+ */
+struct reciprocal_value_adv reciprocal_value_adv(u32 d, u8 prec);
+
#endif /* _LINUX_RECIPROCAL_DIV_H */
// SPDX-License-Identifier: GPL-2.0
+#include <linux/bug.h>
#include <linux/kernel.h>
#include <asm/div64.h>
#include <linux/reciprocal_div.h>
return R;
}
EXPORT_SYMBOL(reciprocal_value);
+
+struct reciprocal_value_adv reciprocal_value_adv(u32 d, u8 prec)
+{
+ struct reciprocal_value_adv R;
+ u32 l, post_shift;
+ u64 mhigh, mlow;
+
+ /* ceil(log2(d)) */
+ l = fls(d - 1);
+ /* NOTE: mlow/mhigh could overflow u64 when l == 32. This case needs to
+ * be handled before calling "reciprocal_value_adv", please see the
+ * comment at include/linux/reciprocal_div.h.
+ */
+ WARN(l == 32,
+ "ceil(log2(0x%08x)) == 32, %s doesn't support such divisor",
+ d, __func__);
+ post_shift = l;
+ mlow = 1ULL << (32 + l);
+ do_div(mlow, d);
+ mhigh = (1ULL << (32 + l)) + (1ULL << (32 + l - prec));
+ do_div(mhigh, d);
+
+ for (; post_shift > 0; post_shift--) {
+ u64 lo = mlow >> 1, hi = mhigh >> 1;
+
+ if (lo >= hi)
+ break;
+
+ mlow = lo;
+ mhigh = hi;
+ }
+
+ R.m = (u32)mhigh;
+ R.sh = post_shift;
+ R.exp = l;
+ R.is_wide_m = mhigh > U32_MAX;
+
+ return R;
+}
+EXPORT_SYMBOL(reciprocal_value_adv);