*
* The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
* Drivers are free to embed either of them into their own suitable
- * datastructures. drm_mm itself will not do any allocations of its own, so if
- * drivers choose not to embed nodes they need to still allocate them
+ * datastructures. drm_mm itself will not do any memory allocations of its own,
+ * so if drivers choose not to embed nodes they need to still allocate them
* themselves.
*
* The range allocator also supports reservation of preallocated blocks. This is
* steep cliff not a real concern. Removing a node again is O(1).
*
* drm_mm supports a few features: Alignment and range restrictions can be
- * supplied. Further more every &drm_mm_node has a color value (which is just an
+ * supplied. Furthermore every &drm_mm_node has a color value (which is just an
* opaque unsigned long) which in conjunction with a driver callback can be used
* to implement sophisticated placement restrictions. The i915 DRM driver uses
* this to implement guard pages between incompatible caching domains in the
* @mm: drm_mm allocator to insert @node into
* @node: drm_mm_node to insert
*
- * This functions inserts an already set-up drm_mm_node into the allocator,
- * meaning that start, size and color must be set by the caller. This is useful
- * to initialize the allocator with preallocated objects which must be set-up
- * before the range allocator can be set-up, e.g. when taking over a firmware
- * framebuffer.
+ * This functions inserts an already set-up &drm_mm_node into the allocator,
+ * meaning that start, size and color must be set by the caller. All other
+ * fields must be cleared to 0. This is useful to initialize the allocator with
+ * preallocated objects which must be set-up before the range allocator can be
+ * set-up, e.g. when taking over a firmware framebuffer.
*
* Returns:
* 0 on success, -ENOSPC if there's no hole where @node is.
* @sflags: flags to fine-tune the allocation search
* @aflags: flags to fine-tune the allocation behavior
*
- * The preallocated node must be cleared to 0.
+ * The preallocated @node must be cleared to 0.
*
* Returns:
* 0 on success, -ENOSPC if there's no suitable hole.
EXPORT_SYMBOL(drm_mm_replace_node);
/**
- * DOC: lru scan roaster
+ * DOC: lru scan roster
*
* Very often GPUs need to have continuous allocations for a given object. When
* evicting objects to make space for a new one it is therefore not most
* The DRM range allocator supports this use-case through the scanning
* interfaces. First a scan operation needs to be initialized with
* drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
- * objects to the roster (probably by walking an LRU list, but this can be
- * freely implemented) (using drm_mm_scan_add_block()) until a suitable hole
- * is found or there are no further evictable objects.
+ * objects to the roster, probably by walking an LRU list, but this can be
+ * freely implemented. Eviction candiates are added using
+ * drm_mm_scan_add_block() until a suitable hole is found or there are no
+ * further evictable objects. Eviction roster metadata is tracked in struct
+ * &drm_mm_scan.
*
* The driver must walk through all objects again in exactly the reverse
* order to restore the allocator state. Note that while the allocator is used
*
* Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
* reported true) in the scan, and any overlapping nodes after color adjustment
- * (drm_mm_scan_evict_color()). Adding and removing an object is O(1), and
+ * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
* since freeing a node is also O(1) the overall complexity is
* O(scanned_objects). So like the free stack which needs to be walked before a
* scan operation even begins this is linear in the number of objects. It
* @scan: the active drm_mm scanner
* @node: drm_mm_node to remove
*
- * Nodes _must_ be removed in exactly the reverse order from the scan list as
- * they have been added (e.g. using list_add as they are added and then
- * list_for_each over that eviction list to remove), otherwise the internal
+ * Nodes **must** be removed in exactly the reverse order from the scan list as
+ * they have been added (e.g. using list_add() as they are added and then
+ * list_for_each() over that eviction list to remove), otherwise the internal
* state of the memory manager will be corrupted.
*
* When the scan list is empty, the selected memory nodes can be freed. An
- * immediately following drm_mm_search_free with !DRM_MM_SEARCH_BEST will then
- * return the just freed block (because its at the top of the free_stack list).
+ * immediately following drm_mm_insert_node_in_range_generic() or one of the
+ * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
+ * the just freed block (because its at the top of the free_stack list).
*
* Returns:
* True if this block should be evicted, false otherwise. Will always
#define DRM_MM_BOTTOMUP DRM_MM_SEARCH_DEFAULT, DRM_MM_CREATE_DEFAULT
#define DRM_MM_TOPDOWN DRM_MM_SEARCH_BELOW, DRM_MM_CREATE_TOP
+/**
+ * struct drm_mm_node - allocated block in the DRM allocator
+ *
+ * This represents an allocated block in a &drm_mm allocator. Except for
+ * pre-reserved nodes inserted using drm_mm_reserve_node() the structure is
+ * entirely opaque and should only be accessed through the provided funcions.
+ * Since allocation of these nodes is entirely handled by the driver they can be
+ * embedded.
+ */
struct drm_mm_node {
+ /** @color: Opaque driver-private tag. */
+ unsigned long color;
+ /** @start: Start address of the allocated block. */
+ u64 start;
+ /** @size: Size of the allocated block. */
+ u64 size;
+ /* private: */
struct list_head node_list;
struct list_head hole_stack;
struct rb_node rb;
unsigned hole_follows : 1;
unsigned allocated : 1;
bool scanned_block : 1;
- unsigned long color;
- u64 start;
- u64 size;
u64 __subtree_last;
struct drm_mm *mm;
#ifdef CONFIG_DRM_DEBUG_MM
#endif
};
+/**
+ * struct drm_mm - DRM allocator
+ *
+ * DRM range allocator with a few special functions and features geared towards
+ * managing GPU memory. Except for the @color_adjust callback the structure is
+ * entirely opaque and should only be accessed through the provided functions
+ * and macros. This structure can be embedded into larger driver structures.
+ */
struct drm_mm {
+ /**
+ * @color_adjust:
+ *
+ * Optional driver callback to further apply restrictions on a hole. The
+ * node argument points at the node containing the hole from which the
+ * block would be allocated (see drm_mm_hole_follows() and friends). The
+ * other arguments are the size of the block to be allocated. The driver
+ * can adjust the start and end as needed to e.g. insert guard pages.
+ */
+ void (*color_adjust)(const struct drm_mm_node *node,
+ unsigned long color,
+ u64 *start, u64 *end);
+
+ /* private: */
/* List of all memory nodes that immediately precede a free hole. */
struct list_head hole_stack;
/* head_node.node_list is the list of all memory nodes, ordered
/* Keep an interval_tree for fast lookup of drm_mm_nodes by address. */
struct rb_root interval_tree;
- void (*color_adjust)(const struct drm_mm_node *node,
- unsigned long color,
- u64 *start, u64 *end);
-
unsigned long scan_active;
};
+/**
+ * struct drm_mm_scan - DRM allocator eviction roaster data
+ *
+ * This structure tracks data needed for the eviction roaster set up using
+ * drm_mm_scan_init(), and used with drm_mm_scan_add_block() and
+ * drm_mm_scan_remove_block(). The structure is entirely opaque and should only
+ * be accessed through the provided functions and macros. It is meant to be
+ * allocated temporarily by the driver on the stack.
+ */
struct drm_mm_scan {
+ /* private: */
struct drm_mm *mm;
u64 size;
*
* Holes are embedded into the drm_mm using the tail of a drm_mm_node.
* If you wish to know whether a hole follows this particular node,
- * query this function.
+ * query this function. See also drm_mm_hole_node_start() and
+ * drm_mm_hole_node_end().
*
* Returns:
* True if a hole follows the @node.
/**
* drm_mm_for_each_node - iterator to walk over all allocated nodes
- * @entry: drm_mm_node structure to assign to in each iteration step
- * @mm: drm_mm allocator to walk
+ * @entry: &struct drm_mm_node to assign to in each iteration step
+ * @mm: &drm_mm allocator to walk
*
* This iterator walks over all nodes in the range allocator. It is implemented
- * with list_for_each, so not save against removal of elements.
+ * with list_for_each(), so not save against removal of elements.
*/
#define drm_mm_for_each_node(entry, mm) \
list_for_each_entry(entry, drm_mm_nodes(mm), node_list)
/**
* drm_mm_for_each_node_safe - iterator to walk over all allocated nodes
- * @entry: drm_mm_node structure to assign to in each iteration step
- * @next: drm_mm_node structure to store the next step
- * @mm: drm_mm allocator to walk
+ * @entry: &struct drm_mm_node to assign to in each iteration step
+ * @next: &struct drm_mm_node to store the next step
+ * @mm: &drm_mm allocator to walk
*
* This iterator walks over all nodes in the range allocator. It is implemented
- * with list_for_each_safe, so save against removal of elements.
+ * with list_for_each_safe(), so save against removal of elements.
*/
#define drm_mm_for_each_node_safe(entry, next, mm) \
list_for_each_entry_safe(entry, next, drm_mm_nodes(mm), node_list)
/**
* drm_mm_for_each_hole - iterator to walk over all holes
- * @entry: drm_mm_node used internally to track progress
- * @mm: drm_mm allocator to walk
+ * @entry: &drm_mm_node used internally to track progress
+ * @mm: &drm_mm allocator to walk
* @hole_start: ulong variable to assign the hole start to on each iteration
* @hole_end: ulong variable to assign the hole end to on each iteration
*
* This iterator walks over all holes in the range allocator. It is implemented
- * with list_for_each, so not save against removal of elements. @entry is used
+ * with list_for_each(), so not save against removal of elements. @entry is used
* internally and will not reflect a real drm_mm_node for the very first hole.
* Hence users of this iterator may not access it.
*
* @sflags: flags to fine-tune the allocation search
* @aflags: flags to fine-tune the allocation behavior
*
+ * This is a simplified version of drm_mm_insert_node_in_range_generic() with no
+ * range restrictions applied.
+ *
* The preallocated node must be cleared to 0.
*
* Returns:
* @color: opaque tag value to use for the allocation
* @flags: flags to specify how the allocation will be performed afterwards
*
+ * This is a simplified version of drm_mm_scan_init_with_range() with no range
+ * restrictions applied.
+ *
* This simply sets up the scanning routines with the parameters for the desired
* hole.
*